diff options
author | Karen Arutyunov <karen@codesynthesis.com> | 2020-02-04 23:25:32 +0300 |
---|---|---|
committer | Karen Arutyunov <karen@codesynthesis.com> | 2020-02-05 14:10:28 +0300 |
commit | 4bbc0b8d81ddb028967b579732d6cc58903a0886 (patch) | |
tree | 2d70c98e5ff8eb240370ca32fdd4951c776fdff1 | |
parent | b9d38eadae2fd9d933abb20893d2a3f822b0210e (diff) |
Always calculate scheduler shard size as a primary number
-rw-r--r-- | libbuild2/scheduler.cxx | 78 |
1 files changed, 42 insertions, 36 deletions
diff --git a/libbuild2/scheduler.cxx b/libbuild2/scheduler.cxx index 7aca552..e84f1f0 100644 --- a/libbuild2/scheduler.cxx +++ b/libbuild2/scheduler.cxx @@ -283,48 +283,54 @@ namespace build2 { size_t n (max_threads_ == 1 ? 0 : max_threads_ * mul / div / 4); + // Return true if the specified number is prime. + // + auto prime = [] (size_t n) + { + // Check whether any number from 2 to the square root of n evenly + // divides n, and return false if that's the case. + // + // While iterating i till sqrt(n) would be more efficient let's do + // without floating arithmetic, since it doesn't make much difference + // for the numbers we evaluate. Note that checking for i <= n / 2 is + // just as efficient for small numbers but degrades much faster for + // bigger numbers. + // + for (size_t i (2); i * i <= n; ++i) + { + if (n % i == 0) + return false; + } + + return n > 1; + }; + + // Return a prime number that is not less than the specified number. + // + auto next_prime = [&prime] (size_t n) + { + // Note that there is always a prime number in [n, 2 * n). + // + for (;; ++n) + { + if (prime (n)) + return n; + } + }; + // Experience shows that we want something close to 2x for small numbers, // then reduce to 1.5x in-between, and 1x for large ones. // // Note that Intel Xeons are all over the map when it comes to cores (6, // 8, 10, 12, 14, 16, 18, 20, 22). // - return // HW threads x arch-bits (see max_threads below) - n == 0 ? 1 : // serial - // - // 2x - // - n == 1 ? 3 : - n == 2 ? 5 : - n == 4 ? 11 : - n == 6 ? 13 : - n == 8 ? 17 : // 2 x 4 - n == 16 ? 31 : // 4 x 4, 2 x 8 - // - // 1.5x - // - n == 32 ? 47 : // 4 x 8 - n == 48 ? 53 : // 6 x 8 - n == 64 ? 67 : // 8 x 8 - n == 80 ? 89 : // 10 x 8 - // - // 1x - // - n == 96 ? 101 : // 12 x 8 - n == 112 ? 127 : // 14 x 8 - n == 128 ? 131 : // 16 x 8 - n == 144 ? 139 : // 18 x 8 - n == 160 ? 157 : // 20 x 8 - n == 176 ? 173 : // 22 x 8 - n == 192 ? 191 : // 24 x 8 - n == 224 ? 223 : // 28 x 8 - n == 256 ? 251 : // 32 x 8 - n == 288 ? 271 : // 36 x 8 - n == 320 ? 313 : // 40 x 8 - n == 352 ? 331 : // 44 x 8 - n == 384 ? 367 : // 48 x 8 - n == 512 ? 499 : // 64 x 8 - n - 1; // Assume it is even. + // HW threads x arch-bits (see max_threads below). + // + return n == 0 ? 1 : // serial + n == 1 ? 3 : // odd prime number + n <= 16 ? next_prime (n * 2) : // {2, 4} x 4, 2 x 8 + n <= 80 ? next_prime (n * 3 / 2) : // {4, 6, 8, 10} x 8 + next_prime (n) ; // {12, 14, 16, ...} x 8, ... } void scheduler:: |