diff options
author | Boris Kolpackov <boris@codesynthesis.com> | 2015-07-20 10:38:02 +0200 |
---|---|---|
committer | Boris Kolpackov <boris@codesynthesis.com> | 2015-07-20 10:38:02 +0200 |
commit | c1981e367aafc22389ac0ab506b00e9657c8071c (patch) | |
tree | 528b0d00283411de2daf6d0e2163f72f2e741ee9 /build/cxx/rule.cxx | |
parent | 243da3993c138d33063f633aa3996a8a710ea396 (diff) |
Implement support for importing installed libraries
Diffstat (limited to 'build/cxx/rule.cxx')
-rw-r--r-- | build/cxx/rule.cxx | 1300 |
1 files changed, 0 insertions, 1300 deletions
diff --git a/build/cxx/rule.cxx b/build/cxx/rule.cxx deleted file mode 100644 index 9228994..0000000 --- a/build/cxx/rule.cxx +++ /dev/null @@ -1,1300 +0,0 @@ -// file : build/cxx/rule.cxx -*- C++ -*- -// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd -// license : MIT; see accompanying LICENSE file - -#include <build/cxx/rule> - -#include <map> -#include <string> -#include <cstddef> // size_t -#include <cstdlib> // exit -#include <utility> // move() - -#include <butl/process> -#include <butl/utility> // reverse_iterate -#include <butl/fdstream> -#include <butl/optional> -#include <butl/path-map> - -#include <build/types> -#include <build/scope> -#include <build/variable> -#include <build/algorithm> -#include <build/diagnostics> -#include <build/context> - -#include <build/bin/target> -#include <build/cxx/target> - -#include <build/config/utility> - -using namespace std; -using namespace butl; - -namespace build -{ - namespace cxx - { - using namespace bin; - - using config::append_options; - - static void - append_std (cstrings& args, target& t, string& opt) - { - if (auto val = t["cxx.std"]) - { - const string& v (val.as<const string&> ()); - - // Translate 11 to 0x and 14 to 1y for compatibility with - // older versions of the compiler. - // - opt = "-std=c++"; - - if (v == "11") - opt += "0x"; - else if (v == "14") - opt += "1y"; - else - opt += v; - - args.push_back (opt.c_str ()); - } - } - - // Append library options from one of the cxx.export.* variables - // recursively, prerequisite libraries first. - // - static void - append_lib_options (cstrings& args, target& l, const char* var) - { - for (target* t: l.prerequisite_targets) - { - if (t->is_a<lib> () || t->is_a<liba> () || t->is_a<libso> ()) - append_lib_options (args, *t, var); - } - - append_options (args, l, var); - } - - // compile - // - match_result compile:: - match (action a, target& t, const string&) const - { - tracer trace ("cxx::compile::match"); - - // @@ TODO: - // - // - check prerequisites: single source file - // - check prerequisites: the rest are headers (other ignorable?) - // - if path already assigned, verify extension? - // - - // See if we have a C++ source file. Iterate in reverse so that - // a source file specified for an obj*{} member overrides the one - // specified for the group. Also "see through" groups. - // - for (prerequisite_member p: reverse_group_prerequisite_members (a, t)) - { - if (p.is_a<cxx> ()) - return p; - } - - level3 ([&]{trace << "no c++ source file for target " << t;}); - return nullptr; - } - - static void - inject_prerequisites (action, target&, cxx&, scope&); - - recipe compile:: - apply (action a, target& xt, const match_result& mr) const - { - path_target& t (static_cast<path_target&> (xt)); - - // Derive file name from target name. - // - if (t.path ().empty ()) - t.derive_path ("o", nullptr, (t.is_a<objso> () ? "-so" : nullptr)); - - // Inject dependency on the output directory. - // - inject_parent_fsdir (a, t); - - // Search and match all the existing prerequisites. The injection - // code (below) takes care of the ones it is adding. - // - // When cleaning, ignore prerequisites that are not in the same - // or a subdirectory of our strong amalgamation. - // - const dir_path* amlg ( - a.operation () != clean_id - ? nullptr - : &t.strong_scope ().path ()); - - for (prerequisite_member p: group_prerequisite_members (a, t)) - { - target& pt (p.search ()); - - if (a.operation () == clean_id && !pt.dir.sub (*amlg)) - continue; - - // A dependency on a library is there so that we can get its - // cxx.export.poptions. In particular, making sure it is - // executed before us will only restrict parallelism. But we - // do need to match it in order to get its prerequisite_targets - // populated; see append_lib_options() above. - // - if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ()) - { - // @@ The fact that we match but never execute messes up - // the dependents count. This is a workaround, not a - // solution. - // - if (a.operation () == update_id) - build::match (a, pt); - - continue; - } - - build::match (a, pt); - t.prerequisite_targets.push_back (&pt); - } - - // Inject additional prerequisites. We only do it for update - // since chances are we will have to update some of our - // prerequisites in the process (auto-generated source code). - // - if (a.operation () == update_id) - { - // The cached prerequisite target should be the same as what - // is in t.prerequisite_targets since we used standard - // search() and match() above. - // - // @@ Ugly. - // - cxx& st ( - dynamic_cast<cxx&> ( - mr.target != nullptr ? *mr.target : *mr.prerequisite->target)); - inject_prerequisites (a, t, st, mr.prerequisite->scope); - } - - switch (a) - { - case perform_update_id: return &perform_update; - case perform_clean_id: return &perform_clean; - default: return default_recipe; // Forward to prerequisites. - } - } - - // The strings used as the map key should be from the extension_pool. - // This way we can just compare pointers. - // - using ext_map = map<const string*, const target_type*>; - - static ext_map - build_ext_map (scope& r) - { - ext_map m; - - if (auto val = r["h.ext"]) - m[&extension_pool.find (val.as<const string&> ())] = &h::static_type; - - if (auto val = r["c.ext"]) - m[&extension_pool.find (val.as<const string&> ())] = &c::static_type; - - if (auto val = r["hxx.ext"]) - m[&extension_pool.find (val.as<const string&> ())] = &hxx::static_type; - - if (auto val = r["ixx.ext"]) - m[&extension_pool.find (val.as<const string&> ())] = &ixx::static_type; - - if (auto val = r["txx.ext"]) - m[&extension_pool.find (val.as<const string&> ())] = &txx::static_type; - - if (auto val = r["cxx.ext"]) - m[&extension_pool.find (val.as<const string&> ())] = &cxx::static_type; - - return m; - } - - // Mapping of include prefixes (e.g., foo in <foo/bar>) for auto- - // generated headers to directories where they will be generated. - // - // We are using a prefix map of directories (dir_path_map) instead - // of just a map in order also cover sub-paths (e.g., <foo/more/bar> - // if we continue with the example). Specifically, we need to make - // sure we don't treat foobar as a sub-directory of foo. - // - // @@ The keys should be canonicalized. - // - using prefix_map = dir_path_map<dir_path>; - - static void - append_prefixes (prefix_map& m, target& t, const char* var) - { - tracer trace ("cxx::append_prefixes"); - - const dir_path& out_base (t.dir); - const dir_path& out_root (t.root_scope ().path ()); - - if (auto val = t[var]) - { - const list_value& l (val.template as<const list_value&> ()); - - // Assume the names have already been vetted by append_options(). - // - for (auto i (l.begin ()), e (l.end ()); i != e; ++i) - { - // -I can either be in the -Ifoo or -I foo form. - // - dir_path d; - if (i->value == "-I") - { - if (++i == e) - break; // Let the compiler complain. - - d = i->simple () ? dir_path (i->value) : i->dir; - } - else if (i->value.compare (0, 2, "-I") == 0) - d = dir_path (i->value, 2, string::npos); - else - continue; - - level5 ([&]{trace << "-I '" << d << "'";}); - - // If we are relative or not inside our project root, then - // ignore. - // - if (d.relative () || !d.sub (out_root)) - continue; - - // If the target directory is a sub-directory of the include - // directory, then the prefix is the difference between the - // two. Otherwise, leave it empty. - // - // The idea here is to make this "canonical" setup work auto- - // magically: - // - // 1. We include all files with a prefix, e.g., <foo/bar>. - // 2. The library target is in the foo/ sub-directory, e.g., - // /tmp/foo/. - // 3. The poptions variable contains -I/tmp. - // - dir_path p (out_base.sub (d) ? out_base.leaf (d) : dir_path ()); - - auto j (m.find (p)); - - if (j != m.end ()) - { - if (j->second != d) - fail << "duplicate generated dependency prefix '" << p << "'" << - info << "old mapping to " << j->second << - info << "new mapping to " << d; - } - else - { - level5 ([&]{trace << "'" << p << "' = '" << d << "'";}); - m.emplace (move (p), move (d)); - } - } - } - } - - // Append library prefixes based on the cxx.export.poptions variables - // recursively, prerequisite libraries first. - // - static void - append_lib_prefixes (prefix_map& m, target& l) - { - for (target* t: l.prerequisite_targets) - { - if (t == nullptr) - continue; - - if (t->is_a<lib> () || t->is_a<liba> () || t->is_a<libso> ()) - append_lib_prefixes (m, *t); - } - - append_prefixes (m, l, "cxx.export.poptions"); - } - - static prefix_map - build_prefix_map (target& t) - { - prefix_map m; - - // First process the include directories from prerequisite - // libraries. Note that here we don't need to see group - // members (see apply()). - // - for (prerequisite& p: group_prerequisites (t)) - { - target& pt (*p.target); // Already searched and matched. - - if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ()) - append_lib_prefixes (m, pt); - } - - // Then process our own. - // - append_prefixes (m, t, "cxx.poptions"); - - return m; - } - - // Return the next make prerequisite starting from the specified - // position and update position to point to the start of the - // following prerequisite or l.size() if there are none left. - // - static string - next (const string& l, size_t& p) - { - size_t n (l.size ()); - - // Skip leading spaces. - // - for (; p != n && l[p] == ' '; p++) ; - - // Lines containing multiple prerequisites are 80 characters max. - // - string r; - r.reserve (n); - - // Scan the next prerequisite while watching out for escape sequences. - // - for (; p != n && l[p] != ' '; p++) - { - char c (l[p]); - - if (c == '\\') - c = l[++p]; - - r += c; - } - - // Skip trailing spaces. - // - for (; p != n && l[p] == ' '; p++) ; - - // Skip final '\'. - // - if (p == n - 1 && l[p] == '\\') - p++; - - return r; - } - - static void - inject_prerequisites (action a, target& t, cxx& s, scope& ds) - { - tracer trace ("cxx::compile::inject_prerequisites"); - - scope& rs (t.root_scope ()); - const string& cxx (rs["config.cxx"].as<const string&> ()); - - cstrings args {cxx.c_str ()}; - - // Add cxx.export.poptions from prerequisite libraries. Note - // that here we don't need to see group members (see apply()). - // - for (prerequisite& p: group_prerequisites (t)) - { - target& pt (*p.target); // Already searched and matched. - - if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ()) - append_lib_options (args, pt, "cxx.export.poptions"); - } - - append_options (args, t, "cxx.poptions"); - - // @@ Some C++ options (e.g., -std, -m) affect the preprocessor. - // Or maybe they are not C++ options? Common options? - // - append_options (args, t, "cxx.coptions"); - - string std; // Storage. - append_std (args, t, std); - - if (t.is_a<objso> ()) - args.push_back ("-fPIC"); - - args.push_back ("-M"); // Note: -MM -MG skips missing <>-included. - args.push_back ("-MG"); // Treat missing headers as generated. - args.push_back ("-MQ"); // Quoted target name. - args.push_back ("*"); // Old versions can't handle empty target name. - - // We are using absolute source file path in order to get absolute - // paths in the result. Any relative paths in the result are non- - // existent, potentially auto-generated headers. - // - // @@ We will also have to use absolute -I paths to guarantee - // that. Or just detect relative paths and error out? - // - args.push_back (s.path ().string ().c_str ()); - args.push_back (nullptr); - - level5 ([&]{trace << "target: " << t;}); - - // Build the prefix map lazily only if we have non-existent files. - // Also reuse it over restarts since it doesn't change. - // - prefix_map pm; - - // If any prerequisites that we have extracted changed, then we - // have to redo the whole thing. The reason for this is auto- - // generated headers: the updated header may now include a yet- - // non-existent header. Unless we discover this and generate it - // (which, BTW, will trigger another restart since that header, - // in turn, can also include auto-generated headers), we will - // end up with an error during compilation proper. - // - // One complication with this restart logic is that we will see - // a "prefix" of prerequisites that we have already processed - // (i.e., they are already in our prerequisite_targets list) and - // we don't want to keep redoing this over and over again. One - // thing to note, however, is that the prefix that we have seen - // on the previous run must appear exactly the same in the - // subsequent run. The reason for this is that none of the files - // that it can possibly be based on have changed and thus it - // should be exactly the same. To put it another way, the - // presence or absence of a file in the dependency output can - // only depend on the previous files (assuming the compiler - // outputs them as it encounters them and it is hard to think - // of a reason why would someone do otherwise). And we have - // already made sure that all those files are up to date. And - // here is the way we are going to exploit this: we are going - // to keep track of how many prerequisites we have processed so - // far and on restart skip right to the next one. - // - // Also, before we do all that, make sure the source file itself - // if up to date. - // - execute_direct (a, s); - - size_t skip_count (0); - for (bool restart (true); restart; ) - { - restart = false; - - if (verb >= 2) - print_process (args); - - try - { - process pr (args.data (), false, false, true); - ifdstream is (pr.in_ofd); - - size_t skip (skip_count); - for (bool first (true), second (true); !(restart || is.eof ()); ) - { - string l; - getline (is, l); - - if (is.fail () && !is.eof ()) - fail << "io error while parsing g++ -M output"; - - size_t pos (0); - - if (first) - { - // Empty output should mean the wait() call below will return - // false. - // - if (l.empty ()) - break; - - assert (l[0] == '*' && l[1] == ':' && l[2] == ' '); - - first = false; - - // While normally we would have the source file on the - // first line, if too long, it will be moved to the next - // line and all we will have on this line is "*: \". - // - if (l.size () == 4 && l[3] == '\\') - continue; - else - pos = 3; // Skip "*: ". - - // Fall through to the 'second' block. - } - - if (second) - { - second = false; - next (l, pos); // Skip the source file. - } - - // If things go wrong (and they often do in this area), give - // the user a bit extra context. - // - auto g ( - make_exception_guard ( - [](target& s) - { - info << "while extracting dependencies from " << s; - }, - s)); - - while (pos != l.size ()) - { - string fs (next (l, pos)); - - // Skip until where we left off. - // - if (skip != 0) - { - skip--; - continue; - } - - path f (move (fs)); - f.normalize (); - - if (!f.absolute ()) - { - // This is probably as often an error as an auto-generated - // file, so trace at level 3. - // - level3 ([&]{trace << "non-existent header '" << f << "'";}); - - // If we already did it and build_prefix_map() returned empty, - // then we would have failed below. - // - if (pm.empty ()) - pm = build_prefix_map (t); - - // First try the whole file. Then just the directory. - // - // @@ Has to be a separate map since the prefix can be - // the same as the file name. - // - // auto i (pm.find (f)); - - // Find the most qualified prefix of which we are a - // sub-path. - // - auto i (pm.end ()); - - if (!pm.empty ()) - { - const dir_path& d (f.directory ()); - i = pm.upper_bound (d); - --i; // Greatest less than. - - if (!d.sub (i->first)) // We might still not be a sub. - i = pm.end (); - } - - if (i == pm.end ()) - fail << "unable to map presumably auto-generated header '" - << f << "' to a project"; - - f = i->second / f; - } - - level5 ([&]{trace << "injecting " << f;}); - - // Split the name into its directory part, the name part, and - // extension. Here we can assume the name part is a valid - // filesystem name. - // - // Note that if the file has no extension, we record an empty - // extension rather than NULL (which would signify that the - // default extension should be added). - // - dir_path d (f.directory ()); - string n (f.leaf ().base ().string ()); - const char* es (f.extension ()); - const string* e (&extension_pool.find (es != nullptr ? es : "")); - - // Determine the target type. - // - const target_type* tt (nullptr); - - // See if this directory is part of any project out_root - // hierarchy. Note that this will miss all the headers - // that come from src_root (so they will be treated as - // generic C headers below). Generally, we don't have - // the ability to determine that some file belongs to - // src_root of some project. But that's not a problem - // for our purposes: it is only important for us to - // accurately determine target types for headers that - // could be auto-generated. - // - if (scope* r = scopes.find (d).root_scope ()) - { - // Get cached (or build) a map of the extensions for the - // C/C++ files this project is using. - // - const ext_map& m (build_ext_map (*r)); - - auto i (m.find (e)); - if (i != m.end ()) - tt = i->second; - } - - // If it is outside any project, or the project doesn't have - // such an extension, assume it is a plain old C header. - // - if (tt == nullptr) - tt = &h::static_type; - - // Find or insert target. - // - path_target& pt ( - static_cast<path_target&> (search (*tt, d, n, e, &ds))); - - // Assign path. - // - if (pt.path ().empty ()) - pt.path (move (f)); - - // Match to a rule. - // - build::match (a, pt); - - // Update it. - // - // There would normally be a lot of headers for every source - // file (think all the system headers) and this can get - // expensive. At the same time, most of these headers are - // existing files that we will never be updating (again, - // system headers, for example) and the rule that will match - // them is fallback file_rule. So we are going to do a little - // fast-path optimization by detecting this common case. - // - recipe_function* const* recipe ( - pt.recipe (a).target<recipe_function*> ()); - - if (recipe == nullptr || *recipe != &file_rule::perform_update) - { - // We only want to restart if our call to execute() actually - // caused an update. In particular, the target could already - // have been in target_state::changed because of a dependency - // extraction run for some other source file. - // - target_state os (pt.state ()); - target_state ns (execute_direct (a, pt)); - - if (ns != os && ns != target_state::unchanged) - { - level5 ([&]{trace << "updated " << pt << ", restarting";}); - restart = true; - } - } - - // Add to our prerequisite target list. - // - t.prerequisite_targets.push_back (&pt); - skip_count++; - } - } - - // We may not have read all the output (e.g., due to a restart), - // so close the file descriptor before waiting to avoid blocking - // the other end. - // - is.close (); - - // We assume the child process issued some diagnostics. - // - if (!pr.wait ()) - throw failed (); - } - catch (const process_error& e) - { - error << "unable to execute " << args[0] << ": " << e.what (); - - // In a multi-threaded program that fork()'ed but did not exec(), - // it is unwise to try to do any kind of cleanup (like unwinding - // the stack and running destructors). - // - if (e.child ()) - exit (1); - - throw failed (); - } - } - } - - target_state compile:: - perform_update (action a, target& xt) - { - path_target& t (static_cast<path_target&> (xt)); - cxx* s (execute_prerequisites<cxx> (a, t, t.mtime ())); - - if (s == nullptr) - return target_state::unchanged; - - // Translate paths to relative (to working directory) ones. This - // results in easier to read diagnostics. - // - path relo (relative (t.path ())); - path rels (relative (s->path ())); - - scope& rs (t.root_scope ()); - const string& cxx (rs["config.cxx"].as<const string&> ()); - - cstrings args {cxx.c_str ()}; - - // Add cxx.export.poptions from prerequisite libraries. Note that - // here we don't need to see group members (see apply()). - // - for (prerequisite& p: group_prerequisites (t)) - { - target& pt (*p.target); // Already searched and matched. - - if (pt.is_a<lib> () || pt.is_a<liba> () || pt.is_a<libso> ()) - append_lib_options (args, pt, "cxx.export.poptions"); - } - - append_options (args, t, "cxx.poptions"); - append_options (args, t, "cxx.coptions"); - - string std; // Storage. - append_std (args, t, std); - - if (t.is_a<objso> ()) - args.push_back ("-fPIC"); - - args.push_back ("-o"); - args.push_back (relo.string ().c_str ()); - - args.push_back ("-c"); - args.push_back (rels.string ().c_str ()); - - args.push_back (nullptr); - - if (verb) - print_process (args); - else - text << "c++ " << *s; - - try - { - process pr (args.data ()); - - if (!pr.wait ()) - throw failed (); - - // Should we go to the filesystem and get the new mtime? We - // know the file has been modified, so instead just use the - // current clock time. It has the advantage of having the - // subseconds precision. - // - t.mtime (system_clock::now ()); - return target_state::changed; - } - catch (const process_error& e) - { - error << "unable to execute " << args[0] << ": " << e.what (); - - // In a multi-threaded program that fork()'ed but did not exec(), - // it is unwise to try to do any kind of cleanup (like unwinding - // the stack and running destructors). - // - if (e.child ()) - exit (1); - - throw failed (); - } - } - - // link - // - inline link::type link:: - link_type (target& t) - { - return t.is_a<exe> () ? type::e : (t.is_a<liba> () ? type::a : type::so); - } - - link::order link:: - link_order (target& t) - { - const char* var; - - switch (link_type (t)) - { - case type::e: var = "bin.exe.lib"; break; - case type::a: var = "bin.liba.lib"; break; - case type::so: var = "bin.libso.lib"; break; - } - - const list_value& lv (t[var].as<const list_value&> ()); - return lv[0].value == "shared" - ? lv.size () > 1 && lv[1].value == "static" ? order::so_a : order::so - : lv.size () > 1 && lv[1].value == "shared" ? order::a_so : order::a; - } - - match_result link:: - match (action a, target& t, const string& hint) const - { - tracer trace ("cxx::link::match"); - - // @@ TODO: - // - // - check prerequisites: object files, libraries - // - if path already assigned, verify extension? - // - // @@ Q: - // - // - if there is no .o, are we going to check if the one derived - // from target exist or can be built? A: No. - // What if there is a library. Probably ok if .a, not if .so. - // (i.e., a utility library). - // - - bool so (t.is_a<libso> ()); - - // Scan prerequisites and see if we can work with what we've got. - // - bool seen_cxx (false), seen_c (false), seen_obj (false), - seen_lib (false); - - for (prerequisite_member p: group_prerequisite_members (a, t)) - { - if (p.is_a<cxx> ()) - { - seen_cxx = seen_cxx || true; - } - else if (p.is_a<c> ()) - { - seen_c = seen_c || true; - } - else if (p.is_a<obja> ()) - { - if (so) - fail << "shared library " << t << " prerequisite " << p - << " is static object"; - - seen_obj = seen_obj || true; - } - else if (p.is_a<objso> () || - p.is_a<obj> ()) - { - seen_obj = seen_obj || true; - } - else if (p.is_a<liba> () || - p.is_a<libso> () || - p.is_a<lib> ()) - { - seen_lib = seen_lib || true; - } - else if (p.is_a<h> () || - p.is_a<hxx> () || - p.is_a<ixx> () || - p.is_a<txx> () || - p.is_a<fsdir> ()) - ; - else - { - level3 ([&]{trace << "unexpected prerequisite type " << p.type ();}); - return nullptr; - } - } - - // We will only chain a C source if there is also a C++ source or we - // were explicitly told to. - // - if (seen_c && !seen_cxx && hint < "cxx") - { - level3 ([&]{trace << "c prerequisite(s) without c++ or hint";}); - return nullptr; - } - - return seen_cxx || seen_c || seen_obj || seen_lib ? &t : nullptr; - } - - recipe link:: - apply (action a, target& xt, const match_result&) const - { - tracer trace ("cxx::link::apply"); - - path_target& t (static_cast<path_target&> (xt)); - - type lt (link_type (t)); - bool so (lt == type::so); - optional<order> lo; // Link-order. - - // Derive file name from target name. - // - if (t.path ().empty ()) - { - switch (lt) - { - case type::e: t.derive_path ("" ); break; - case type::a: t.derive_path ("a", "lib"); break; - case type::so: t.derive_path ("so", "lib"); break; - } - } - - // Inject dependency on the output directory. - // - inject_parent_fsdir (a, t); - - // We may need the project roots for rule chaining (see below). - // We will resolve them lazily only if needed. - // - scope* root (nullptr); - const dir_path* out_root (nullptr); - const dir_path* src_root (nullptr); - - // Process prerequisites: do rule chaining for C and C++ source - // files as well as search and match. - // - // When cleaning, ignore prerequisites that are not in the same - // or a subdirectory of our strong amalgamation. - // - const dir_path* amlg ( - a.operation () != clean_id - ? nullptr - : &t.strong_scope ().path ()); - - for (prerequisite_member p: group_prerequisite_members (a, t)) - { - bool group (!p.prerequisite.belongs (t)); // Group's prerequisite. - target* pt (nullptr); - - if (!p.is_a<c> () && !p.is_a<cxx> ()) - { - // The same basic logic as in search_and_match(). - // - pt = &p.search (); - - if (a.operation () == clean_id && !pt->dir.sub (*amlg)) - continue; // Skip. - - // If this is the obj{} or lib{} target group, then pick the - // appropriate member and make sure it is searched and matched. - // - if (obj* o = pt->is_a<obj> ()) - { - pt = so ? static_cast<target*> (o->so) : o->a; - - if (pt == nullptr) - pt = &search (so ? objso::static_type : obja::static_type, - p.key ()); - } - else if (lib* l = pt->is_a<lib> ()) - { - // Determine the library type to link. - // - bool lso (true); - const string& at ((*l)["bin.lib"].as<const string&> ()); - - if (!lo) - lo = link_order (t); - - switch (*lo) - { - case order::a: - case order::a_so: - lso = false; // Fall through. - case order::so: - case order::so_a: - { - if (lso ? at == "static" : at == "shared") - { - if (*lo == order::a_so || *lo == order::so_a) - lso = !lso; - else - fail << (lso ? "shared" : "static") << " build of " << *l - << " is not available"; - } - } - } - - pt = lso ? static_cast<target*> (l->so) : l->a; - - if (pt == nullptr) - pt = &search (lso ? libso::static_type : liba::static_type, - p.key ()); - } - - build::match (a, *pt); - t.prerequisite_targets.push_back (pt); - continue; - } - - if (root == nullptr) - { - // Which scope shall we use to resolve the root? Unlikely, - // but possible, the prerequisite is from a different project - // altogether. So we are going to use the target's project. - // - root = &t.root_scope (); - out_root = &root->path (); - src_root = &root->src_path (); - } - - const prerequisite_key& cp (p.key ()); // c(xx){} prerequisite key. - const target_type& o_type ( - group - ? obj::static_type - : (so ? objso::static_type : obja::static_type)); - - // Come up with the obj*{} target. The c(xx){} prerequisite - // directory can be relative (to the scope) or absolute. If it is - // relative, then use it as is. If it is absolute, then translate - // it to the corresponding directory under out_root. While the - // c(xx){} directory is most likely under src_root, it is also - // possible it is under out_root (e.g., generated source). - // - dir_path d; - { - const dir_path& cpd (*cp.tk.dir); - - if (cpd.relative () || cpd.sub (*out_root)) - d = cpd; - else - { - if (!cpd.sub (*src_root)) - fail << "out of project prerequisite " << cp << - info << "specify corresponding " << o_type.name << "{} " - << "target explicitly"; - - d = *out_root / cpd.leaf (*src_root); - } - } - - target& ot (search (o_type, d, *cp.tk.name, nullptr, cp.scope)); - - // If we are cleaning, check that this target is in the same or - // a subdirectory of our strong amalgamation. - // - if (a.operation () == clean_id && !ot.dir.sub (*amlg)) - { - // If we shouldn't clean obj{}, then it is fair to assume - // we shouldn't clean cxx{} either (generated source will - // be in the same directory as obj{} and if not, well, go - // find yourself another build system ;-)). - // - continue; // Skip. - } - - // If we have created the obj{} target group, pick one of its - // members; the rest would be primarily concerned with it. - // - if (group) - { - obj& o (static_cast<obj&> (ot)); - pt = so ? static_cast<target*> (o.so) : o.a; - - if (pt == nullptr) - pt = &search (so ? objso::static_type : obja::static_type, - o.dir, o.name, o.ext, nullptr); - } - else - pt = &ot; - - // If this obj*{} target already exists, then it needs to be - // "compatible" with what we are doing here. - // - // This gets a bit tricky. We need to make sure the source files - // are the same which we can only do by comparing the targets to - // which they resolve. But we cannot search the ot's prerequisites - // -- only the rule that matches can. Note, however, that if all - // this works out, then our next step is to match the obj*{} - // target. If things don't work out, then we fail, in which case - // searching and matching speculatively doesn't really hurt. - // - bool found (false); - for (prerequisite_member p1: - reverse_group_prerequisite_members (a, *pt)) - { - // Ignore some known target types (fsdir, headers, libraries). - // - if (p1.is_a<fsdir> () || - p1.is_a<h> () || - (p.is_a<cxx> () && (p1.is_a<hxx> () || - p1.is_a<ixx> () || - p1.is_a<txx> ())) || - p1.is_a<lib> () || - p1.is_a<liba> () || - p1.is_a<libso> ()) - { - continue; - } - - if (!p1.is_a<cxx> ()) - fail << "synthesized target for prerequisite " << cp - << " would be incompatible with existing target " << *pt << - info << "unexpected existing prerequisite type " << p1 << - info << "specify corresponding obj{} target explicitly"; - - if (!found) - { - build::match (a, *pt); // Now p1 should be resolved. - - // Searching our own prerequisite is ok. - // - if (&p.search () != &p1.search ()) - fail << "synthesized target for prerequisite " << cp << " would " - << "be incompatible with existing target " << *pt << - info << "existing prerequisite " << p1 << " does not match " - << cp << - info << "specify corresponding " << o_type.name << "{} target " - << "explicitly"; - - found = true; - // Check the rest of the prerequisites. - } - } - - if (!found) - { - // Note: add the source to the group, not the member. - // - ot.prerequisites.emplace_back (p.as_prerequisite (trace)); - - // Add our lib*{} prerequisites to the object file (see - // cxx.export.poptions above for details). Note: no need - // to go into group members. - // - // Initially, we were only adding imported libraries, but - // there is a problem with this approach: the non-imported - // library might depend on the imported one(s) which we will - // never "see" unless we start with this library. - // - for (prerequisite& p: group_prerequisites (t)) - { - if (p.is_a<lib> () || p.is_a<liba> () || p.is_a<libso> ()) - ot.prerequisites.emplace_back (p); - } - - build::match (a, *pt); - } - - t.prerequisite_targets.push_back (pt); - } - - switch (a) - { - case perform_update_id: return &perform_update; - case perform_clean_id: return &perform_clean; - default: return default_recipe; // Forward to prerequisites. - } - } - - target_state link:: - perform_update (action a, target& xt) - { - path_target& t (static_cast<path_target&> (xt)); - - type lt (link_type (t)); - bool so (lt == type::so); - - if (!execute_prerequisites (a, t, t.mtime ())) - return target_state::unchanged; - - // Translate paths to relative (to working directory) ones. This - // results in easier to read diagnostics. - // - path relt (relative (t.path ())); - - scope& rs (t.root_scope ()); - cstrings args; - string storage1; - - if (lt == type::a) - { - //@@ ranlib - // - args.push_back ("ar"); - args.push_back ("-rc"); - args.push_back (relt.string ().c_str ()); - } - else - { - args.push_back (rs["config.cxx"].as<const string&> ().c_str ()); - - append_options (args, t, "cxx.coptions"); - - append_std (args, t, storage1); - - if (so) - args.push_back ("-shared"); - - args.push_back ("-o"); - args.push_back (relt.string ().c_str ()); - - append_options (args, t, "cxx.loptions"); - } - - // Reserve enough space so that we don't reallocate. Reallocating - // means pointers to elements may no longer be valid. - // - paths relo; - relo.reserve (t.prerequisite_targets.size ()); - - for (target* pt: t.prerequisite_targets) - { - path_target* ppt; - - if ((ppt = pt->is_a<obja> ())) - ; - else if ((ppt = pt->is_a<objso> ())) - ; - else if ((ppt = pt->is_a<liba> ())) - ; - else if ((ppt = pt->is_a<libso> ())) - { - // Use absolute path for the shared libraries since that's - // the path the runtime loader will use to try to find it. - // This is probably temporary until we get into the whole - // -soname/-rpath mess. - // - args.push_back (ppt->path ().string ().c_str ()); - continue; - } - else - continue; - - relo.push_back (relative (ppt->path ())); - args.push_back (relo.back ().string ().c_str ()); - } - - if (lt != type::a) - append_options (args, t, "cxx.libs"); - - args.push_back (nullptr); - - if (verb) - print_process (args); - else - text << "ld " << t; - - try - { - process pr (args.data ()); - - if (!pr.wait ()) - throw failed (); - - // Should we go to the filesystem and get the new mtime? We - // know the file has been modified, so instead just use the - // current clock time. It has the advantage of having the - // subseconds precision. - // - t.mtime (system_clock::now ()); - return target_state::changed; - } - catch (const process_error& e) - { - error << "unable to execute " << args[0] << ": " << e.what (); - - // In a multi-threaded program that fork()'ed but did not exec(), - // it is unwise to try to do any kind of cleanup (like unwinding - // the stack and running destructors). - // - if (e.child ()) - exit (1); - - throw failed (); - } - } - } -} |