aboutsummaryrefslogtreecommitdiff
path: root/build2/cxx/link.cxx
diff options
context:
space:
mode:
Diffstat (limited to 'build2/cxx/link.cxx')
-rw-r--r--build2/cxx/link.cxx875
1 files changed, 875 insertions, 0 deletions
diff --git a/build2/cxx/link.cxx b/build2/cxx/link.cxx
new file mode 100644
index 0000000..96584d9
--- /dev/null
+++ b/build2/cxx/link.cxx
@@ -0,0 +1,875 @@
+// file : build2/cxx/link.cxx -*- C++ -*-
+// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd
+// license : MIT; see accompanying LICENSE file
+
+#include <build2/cxx/link>
+
+#include <vector>
+#include <string>
+#include <cstddef> // size_t
+#include <cstdlib> // exit()
+#include <utility> // move()
+
+#include <butl/process>
+#include <butl/utility> // reverse_iterate
+#include <butl/fdstream>
+#include <butl/optional>
+#include <butl/path-map>
+#include <butl/filesystem>
+
+#include <build2/types>
+#include <build2/scope>
+#include <build2/variable>
+#include <build2/algorithm>
+#include <build2/diagnostics>
+#include <build2/context>
+
+#include <build2/bin/target>
+#include <build2/cxx/target>
+
+#include <build2/cxx/utility>
+
+using namespace std;
+using namespace butl;
+
+namespace build2
+{
+ namespace cxx
+ {
+ using namespace bin;
+
+ link::order link::
+ link_order (target& t)
+ {
+ const char* var;
+
+ switch (link_type (t))
+ {
+ case type::e: var = "bin.exe.lib"; break;
+ case type::a: var = "bin.liba.lib"; break;
+ case type::so: var = "bin.libso.lib"; break;
+ }
+
+ const auto& v (as<strings> (*t[var]));
+ return v[0] == "shared"
+ ? v.size () > 1 && v[1] == "static" ? order::so_a : order::so
+ : v.size () > 1 && v[1] == "shared" ? order::a_so : order::a;
+ }
+
+ target& link::
+ link_member (bin::lib& l, order lo)
+ {
+ bool lso (true);
+ const string& at (as<string> (*l["bin.lib"])); // Available types.
+
+ switch (lo)
+ {
+ case order::a:
+ case order::a_so:
+ lso = false; // Fall through.
+ case order::so:
+ case order::so_a:
+ {
+ if (lso ? at == "static" : at == "shared")
+ {
+ if (lo == order::a_so || lo == order::so_a)
+ lso = !lso;
+ else
+ fail << (lso ? "shared" : "static") << " build of " << l
+ << " is not available";
+ }
+ }
+ }
+
+ target* r (lso ? static_cast<target*> (l.so) : l.a);
+
+ if (r == nullptr)
+ r = &search (lso ? libso::static_type : liba::static_type,
+ prerequisite_key {nullptr, l.key (), nullptr});
+
+ return *r;
+ }
+
+ link::search_paths link::
+ extract_library_paths (scope& bs)
+ {
+ search_paths r;
+ scope& rs (*bs.root_scope ());
+
+ // Extract user-supplied search paths (i.e., -L).
+ //
+ if (auto l = bs["cxx.loptions"])
+ {
+ const auto& v (as<strings> (*l));
+
+ for (auto i (v.begin ()), e (v.end ()); i != e; ++i)
+ {
+ // -L can either be in the "-Lfoo" or "-L foo" form.
+ //
+ dir_path d;
+ if (*i == "-L")
+ {
+ if (++i == e)
+ break; // Let the compiler complain.
+
+ d = dir_path (*i);
+ }
+ else if (i->compare (0, 2, "-L") == 0)
+ d = dir_path (*i, 2, string::npos);
+ else
+ continue;
+
+ // Ignore relative paths. Or maybe we should warn?
+ //
+ if (!d.relative ())
+ r.push_back (move (d));
+ }
+ }
+
+ // Extract system search paths.
+ //
+ cstrings args;
+ string std_storage;
+
+ args.push_back (as<string> (*rs["config.cxx"]).c_str ());
+ append_options (args, bs, "cxx.coptions");
+ append_std (args, bs, std_storage);
+ append_options (args, bs, "cxx.loptions");
+ args.push_back ("-print-search-dirs");
+ args.push_back (nullptr);
+
+ if (verb >= 3)
+ print_process (args);
+
+ string l;
+ try
+ {
+ process pr (args.data (), 0, -1); // Open pipe to stdout.
+ ifdstream is (pr.in_ofd);
+
+ while (!is.eof ())
+ {
+ string s;
+ getline (is, s);
+
+ if (is.fail () && !is.eof ())
+ fail << "error reading C++ compiler -print-search-dirs output";
+
+ if (s.compare (0, 12, "libraries: =") == 0)
+ {
+ l.assign (s, 12, string::npos);
+ break;
+ }
+ }
+
+ is.close (); // Don't block.
+
+ if (!pr.wait ())
+ throw failed ();
+ }
+ catch (const process_error& e)
+ {
+ error << "unable to execute " << args[0] << ": " << e.what ();
+
+ if (e.child ())
+ exit (1);
+
+ throw failed ();
+ }
+
+ if (l.empty ())
+ fail << "unable to extract C++ compiler system library paths";
+
+ // Now the fun part: figuring out which delimiter is used.
+ // Normally it is ':' but on Windows it is ';' (or can be;
+ // who knows for sure). Also note that these paths are
+ // absolute (or should be). So here is what we are going
+ // to do: first look for ';'. If found, then that's the
+ // delimiter. If not found, then there are two cases:
+ // it is either a single Windows path or the delimiter
+ // is ':'. To distinguish these two cases we check if
+ // the path starts with a Windows drive.
+ //
+ char d (';');
+ string::size_type e (l.find (d));
+
+ if (e == string::npos &&
+ (l.size () < 2 || l[0] == '/' || l[1] != ':'))
+ {
+ d = ':';
+ e = l.find (d);
+ }
+
+ // Now chop it up. We already have the position of the
+ // first delimiter (if any).
+ //
+ for (string::size_type b (0);; e = l.find (d, (b = e + 1)))
+ {
+ r.emplace_back (l, b, (e != string::npos ? e - b : e));
+ r.back ().normalize ();
+
+ if (e == string::npos)
+ break;
+ }
+
+ return r;
+ }
+
+ target* link::
+ search_library (search_paths_cache& spc, prerequisite& p)
+ {
+ tracer trace ("cxx::link::search_library");
+
+ // First check the cache.
+ //
+ if (p.target != nullptr)
+ return p.target;
+
+ bool l (p.is_a<lib> ());
+ const string* ext (l ? nullptr : p.ext); // Only for liba/libso.
+
+ // Then figure out what we need to search for.
+ //
+
+ // liba
+ //
+ path an;
+ const string* ae;
+
+ if (l || p.is_a<liba> ())
+ {
+ an = path ("lib" + p.name);
+
+ // Note that p.scope should be the same as the target's for
+ // which we are looking for this library. The idea here is
+ // that we have to use the same "extension configuration" as
+ // the target's.
+ //
+ ae = ext == nullptr
+ ? &liba::static_type.extension (p.key ().tk, p.scope)
+ : ext;
+
+ if (!ae->empty ())
+ {
+ an += '.';
+ an += *ae;
+ }
+ }
+
+ // libso
+ //
+ path sn;
+ const string* se;
+
+ if (l || p.is_a<libso> ())
+ {
+ sn = path ("lib" + p.name);
+ se = ext == nullptr
+ ? &libso::static_type.extension (p.key ().tk, p.scope)
+ : ext;
+
+ if (!se->empty ())
+ {
+ sn += '.';
+ sn += *se;
+ }
+ }
+
+ // Now search.
+ //
+ if (!spc)
+ spc = extract_library_paths (p.scope);
+
+ liba* a (nullptr);
+ libso* s (nullptr);
+
+ path f; // Reuse the buffer.
+ const dir_path* pd;
+ for (const dir_path& d: *spc)
+ {
+ timestamp mt;
+
+ // liba
+ //
+ if (!an.empty ())
+ {
+ f = d;
+ f /= an;
+
+ if ((mt = file_mtime (f)) != timestamp_nonexistent)
+ {
+ // Enter the target. Note that because the search paths are
+ // normalized, the result is automatically normalized as well.
+ //
+ a = &targets.insert<liba> (d, p.name, ae, trace);
+
+ if (a->path ().empty ())
+ a->path (move (f));
+
+ a->mtime (mt);
+ }
+ }
+
+ // libso
+ //
+ if (!sn.empty ())
+ {
+ f = d;
+ f /= sn;
+
+ if ((mt = file_mtime (f)) != timestamp_nonexistent)
+ {
+ s = &targets.insert<libso> (d, p.name, se, trace);
+
+ if (s->path ().empty ())
+ s->path (move (f));
+
+ s->mtime (mt);
+ }
+ }
+
+ if (a != nullptr || s != nullptr)
+ {
+ pd = &d;
+ break;
+ }
+ }
+
+ if (a == nullptr && s == nullptr)
+ return nullptr;
+
+ if (l)
+ {
+ // Enter the target group.
+ //
+ lib& l (targets.insert<lib> (*pd, p.name, p.ext, trace));
+
+ // It should automatically link-up to the members we have found.
+ //
+ assert (l.a == a);
+ assert (l.so == s);
+
+ // Set the bin.lib variable to indicate what's available.
+ //
+ const char* bl (a != nullptr
+ ? (s != nullptr ? "both" : "static")
+ : "shared");
+ l.assign ("bin.lib") = bl;
+
+ p.target = &l;
+ }
+ else
+ p.target = p.is_a<liba> () ? static_cast<target*> (a) : s;
+
+ return p.target;
+ }
+
+ match_result link::
+ match (action a, target& t, const string& hint) const
+ {
+ tracer trace ("cxx::link::match");
+
+ // @@ TODO:
+ //
+ // - if path already assigned, verify extension?
+ //
+ // @@ Q:
+ //
+ // - if there is no .o, are we going to check if the one derived
+ // from target exist or can be built? A: No.
+ // What if there is a library. Probably ok if .a, not if .so.
+ // (i.e., a utility library).
+ //
+
+ type lt (link_type (t));
+
+ // Scan prerequisites and see if we can work with what we've got.
+ //
+ bool seen_cxx (false), seen_c (false), seen_obj (false),
+ seen_lib (false);
+
+ for (prerequisite_member p: group_prerequisite_members (a, t))
+ {
+ if (p.is_a<cxx> ())
+ {
+ seen_cxx = seen_cxx || true;
+ }
+ else if (p.is_a<c> ())
+ {
+ seen_c = seen_c || true;
+ }
+ else if (p.is_a<obja> ())
+ {
+ if (lt == type::so)
+ fail << "shared library " << t << " prerequisite " << p
+ << " is static object";
+
+ seen_obj = seen_obj || true;
+ }
+ else if (p.is_a<objso> () ||
+ p.is_a<obj> ())
+ {
+ seen_obj = seen_obj || true;
+ }
+ else if (p.is_a<liba> () ||
+ p.is_a<libso> () ||
+ p.is_a<lib> ())
+ {
+ seen_lib = seen_lib || true;
+ }
+ }
+
+ // We will only chain a C source if there is also a C++ source or we
+ // were explicitly told to.
+ //
+ if (seen_c && !seen_cxx && hint < "cxx")
+ {
+ level4 ([&]{trace << "c prerequisite(s) without c++ or hint";});
+ return nullptr;
+ }
+
+ // If we have any prerequisite libraries (which also means that
+ // we match), search/import and pre-match them to implement the
+ // "library meta-information protocol". Don't do this if we are
+ // called from the install rule just to check if we would match.
+ //
+ if (seen_lib && lt != type::e &&
+ a.operation () != install_id && a.outer_operation () != install_id)
+ {
+ if (t.group != nullptr)
+ t.group->prerequisite_targets.clear (); // lib{}'s
+
+ search_paths_cache lib_paths; // Extract lazily.
+
+ for (prerequisite_member p: group_prerequisite_members (a, t))
+ {
+ if (p.is_a<lib> () || p.is_a<liba> () || p.is_a<libso> ())
+ {
+ target* pt (nullptr);
+
+ // Handle imported libraries.
+ //
+ if (p.proj () != nullptr)
+ pt = search_library (lib_paths, p.prerequisite);
+
+ if (pt == nullptr)
+ {
+ pt = &p.search ();
+ match_only (a, *pt);
+ }
+
+ // If the prerequisite came from the lib{} group, then also
+ // add it to lib's prerequisite_targets.
+ //
+ if (!p.prerequisite.belongs (t))
+ t.group->prerequisite_targets.push_back (pt);
+
+ t.prerequisite_targets.push_back (pt);
+ }
+ }
+ }
+
+ return seen_cxx || seen_c || seen_obj || seen_lib ? &t : nullptr;
+ }
+
+ recipe link::
+ apply (action a, target& xt, const match_result&) const
+ {
+ tracer trace ("cxx::link::apply");
+
+ path_target& t (static_cast<path_target&> (xt));
+
+ type lt (link_type (t));
+ bool so (lt == type::so);
+ order lo (link_order (t));
+
+ // Derive file name from target name.
+ //
+ if (t.path ().empty ())
+ {
+ auto l (t["extension"]);
+ const char* e (l ? as<string> (*l).c_str () : nullptr);
+
+ switch (lt)
+ {
+ case type::e:
+ {
+ t.derive_path (e != nullptr ? e : "");
+ break;
+ }
+ case type::a:
+ case type::so:
+ {
+ auto l (t["bin.libprefix"]);
+ t.derive_path (e != nullptr ? e : (lt == type::a ? "a" : "so"),
+ l ? as<string> (*l).c_str () : "lib");
+ break;
+ }
+ }
+ }
+
+ t.prerequisite_targets.clear (); // See lib pre-match in match() above.
+
+ // Inject dependency on the output directory.
+ //
+ inject_parent_fsdir (a, t);
+
+ // We may need the project roots for rule chaining (see below).
+ // We will resolve them lazily only if needed.
+ //
+ scope* root (nullptr);
+ const dir_path* out_root (nullptr);
+ const dir_path* src_root (nullptr);
+
+ search_paths_cache lib_paths; // Extract lazily.
+
+ // Process prerequisites: do rule chaining for C and C++ source
+ // files as well as search and match.
+ //
+ // When cleaning, ignore prerequisites that are not in the same
+ // or a subdirectory of our strong amalgamation.
+ //
+ const dir_path* amlg (
+ a.operation () != clean_id
+ ? nullptr
+ : &t.strong_scope ().out_path ());
+
+ for (prerequisite_member p: group_prerequisite_members (a, t))
+ {
+ bool group (!p.prerequisite.belongs (t)); // Group's prerequisite.
+ target* pt (nullptr);
+
+ if (!p.is_a<c> () && !p.is_a<cxx> ())
+ {
+ // Handle imported libraries.
+ //
+ if (p.proj () != nullptr)
+ pt = search_library (lib_paths, p.prerequisite);
+
+ // The rest is the same basic logic as in search_and_match().
+ //
+ if (pt == nullptr)
+ pt = &p.search ();
+
+ if (a.operation () == clean_id && !pt->dir.sub (*amlg))
+ continue; // Skip.
+
+ // If this is the obj{} or lib{} target group, then pick the
+ // appropriate member and make sure it is searched and matched.
+ //
+ if (obj* o = pt->is_a<obj> ())
+ {
+ pt = so ? static_cast<target*> (o->so) : o->a;
+
+ if (pt == nullptr)
+ pt = &search (so ? objso::static_type : obja::static_type,
+ p.key ());
+ }
+ else if (lib* l = pt->is_a<lib> ())
+ {
+ pt = &link_member (*l, lo);
+ }
+
+ build2::match (a, *pt);
+ t.prerequisite_targets.push_back (pt);
+ continue;
+ }
+
+ if (root == nullptr)
+ {
+ // Which scope shall we use to resolve the root? Unlikely,
+ // but possible, the prerequisite is from a different project
+ // altogether. So we are going to use the target's project.
+ //
+ root = &t.root_scope ();
+ out_root = &root->out_path ();
+ src_root = &root->src_path ();
+ }
+
+ const prerequisite_key& cp (p.key ()); // c(xx){} prerequisite key.
+ const target_type& o_type (
+ group
+ ? obj::static_type
+ : (so ? objso::static_type : obja::static_type));
+
+ // Come up with the obj*{} target. The c(xx){} prerequisite
+ // directory can be relative (to the scope) or absolute. If it is
+ // relative, then use it as is. If it is absolute, then translate
+ // it to the corresponding directory under out_root. While the
+ // c(xx){} directory is most likely under src_root, it is also
+ // possible it is under out_root (e.g., generated source).
+ //
+ dir_path d;
+ {
+ const dir_path& cpd (*cp.tk.dir);
+
+ if (cpd.relative () || cpd.sub (*out_root))
+ d = cpd;
+ else
+ {
+ if (!cpd.sub (*src_root))
+ fail << "out of project prerequisite " << cp <<
+ info << "specify corresponding " << o_type.name << "{} "
+ << "target explicitly";
+
+ d = *out_root / cpd.leaf (*src_root);
+ }
+ }
+
+ target& ot (search (o_type, d, *cp.tk.name, nullptr, cp.scope));
+
+ // If we are cleaning, check that this target is in the same or
+ // a subdirectory of our strong amalgamation.
+ //
+ if (a.operation () == clean_id && !ot.dir.sub (*amlg))
+ {
+ // If we shouldn't clean obj{}, then it is fair to assume
+ // we shouldn't clean cxx{} either (generated source will
+ // be in the same directory as obj{} and if not, well, go
+ // find yourself another build system ;-)).
+ //
+ continue; // Skip.
+ }
+
+ // If we have created the obj{} target group, pick one of its
+ // members; the rest would be primarily concerned with it.
+ //
+ if (group)
+ {
+ obj& o (static_cast<obj&> (ot));
+ pt = so ? static_cast<target*> (o.so) : o.a;
+
+ if (pt == nullptr)
+ pt = &search (so ? objso::static_type : obja::static_type,
+ o.dir, o.name, o.ext, nullptr);
+ }
+ else
+ pt = &ot;
+
+ // If this obj*{} target already exists, then it needs to be
+ // "compatible" with what we are doing here.
+ //
+ // This gets a bit tricky. We need to make sure the source files
+ // are the same which we can only do by comparing the targets to
+ // which they resolve. But we cannot search the ot's prerequisites
+ // -- only the rule that matches can. Note, however, that if all
+ // this works out, then our next step is to match the obj*{}
+ // target. If things don't work out, then we fail, in which case
+ // searching and matching speculatively doesn't really hurt.
+ //
+ bool found (false);
+ for (prerequisite_member p1:
+ reverse_group_prerequisite_members (a, *pt))
+ {
+ // Ignore some known target types (fsdir, headers, libraries).
+ //
+ if (p1.is_a<fsdir> () ||
+ p1.is_a<h> () ||
+ (p.is_a<cxx> () && (p1.is_a<hxx> () ||
+ p1.is_a<ixx> () ||
+ p1.is_a<txx> ())) ||
+ p1.is_a<lib> () ||
+ p1.is_a<liba> () ||
+ p1.is_a<libso> ())
+ {
+ continue;
+ }
+
+ if (!p1.is_a<cxx> ())
+ fail << "synthesized target for prerequisite " << cp
+ << " would be incompatible with existing target " << *pt <<
+ info << "unexpected existing prerequisite type " << p1 <<
+ info << "specify corresponding obj{} target explicitly";
+
+ if (!found)
+ {
+ build2::match (a, *pt); // Now p1 should be resolved.
+
+ // Searching our own prerequisite is ok.
+ //
+ if (&p.search () != &p1.search ())
+ fail << "synthesized target for prerequisite " << cp << " would "
+ << "be incompatible with existing target " << *pt <<
+ info << "existing prerequisite " << p1 << " does not match "
+ << cp <<
+ info << "specify corresponding " << o_type.name << "{} target "
+ << "explicitly";
+
+ found = true;
+ // Check the rest of the prerequisites.
+ }
+ }
+
+ if (!found)
+ {
+ // Note: add the source to the group, not the member.
+ //
+ ot.prerequisites.emplace_back (p.as_prerequisite (trace));
+
+ // Add our lib*{} prerequisites to the object file (see
+ // cxx.export.poptions above for details). Note: no need
+ // to go into group members.
+ //
+ // Initially, we were only adding imported libraries, but
+ // there is a problem with this approach: the non-imported
+ // library might depend on the imported one(s) which we will
+ // never "see" unless we start with this library.
+ //
+ for (prerequisite& p: group_prerequisites (t))
+ {
+ if (p.is_a<lib> () || p.is_a<liba> () || p.is_a<libso> ())
+ ot.prerequisites.emplace_back (p);
+ }
+
+ build2::match (a, *pt);
+ }
+
+ t.prerequisite_targets.push_back (pt);
+ }
+
+ switch (a)
+ {
+ case perform_update_id: return &perform_update;
+ case perform_clean_id: return &perform_clean;
+ default: return noop_recipe; // Configure update.
+ }
+ }
+
+ target_state link::
+ perform_update (action a, target& xt)
+ {
+ path_target& t (static_cast<path_target&> (xt));
+
+ type lt (link_type (t));
+ bool so (lt == type::so);
+
+ if (!execute_prerequisites (a, t, t.mtime ()))
+ return target_state::unchanged;
+
+ // Translate paths to relative (to working directory) ones. This
+ // results in easier to read diagnostics.
+ //
+ path relt (relative (t.path ()));
+
+ scope& rs (t.root_scope ());
+ cstrings args;
+
+ // Storage.
+ //
+ string std;
+ string soname;
+ strings sargs;
+
+ if (lt == type::a)
+ {
+ //@@ ranlib
+ //
+ args.push_back ("ar");
+ args.push_back ("-rc");
+ args.push_back (relt.string ().c_str ());
+ }
+ else
+ {
+ args.push_back (as<string> (*rs["config.cxx"]).c_str ());
+ append_options (args, t, "cxx.coptions");
+ append_std (args, t, std);
+
+ if (so)
+ args.push_back ("-shared");
+
+ args.push_back ("-o");
+ args.push_back (relt.string ().c_str ());
+
+ // Set soname.
+ //
+ if (so)
+ {
+ soname = "-Wl,-soname," + relt.leaf ().string ();
+ args.push_back (soname.c_str ());
+ }
+
+ // Add rpaths. First the ones specified by the user so that they
+ // take precedence.
+ //
+ if (auto l = t["bin.rpath"])
+ for (const string& p: as<strings> (*l))
+ sargs.push_back ("-Wl,-rpath," + p);
+
+ // Then the paths of the shared libraries we are linking to.
+ //
+ for (target* pt: t.prerequisite_targets)
+ {
+ if (libso* ls = pt->is_a<libso> ())
+ sargs.push_back (
+ "-Wl,-rpath," + ls->path ().directory ().string ());
+ }
+ }
+
+ size_t oend (sargs.size ()); // Note the end of options.
+
+ for (target* pt: t.prerequisite_targets)
+ {
+ path_target* ppt;
+
+ if ((ppt = pt->is_a<obja> ()) ||
+ (ppt = pt->is_a<objso> ()) ||
+ (ppt = pt->is_a<liba> ()) ||
+ (ppt = pt->is_a<libso> ()))
+ {
+ sargs.push_back (relative (ppt->path ()).string ()); // string()&&
+ }
+ }
+
+ // Finish assembling args from sargs.
+ //
+ for (size_t i (0); i != sargs.size (); ++i)
+ {
+ if (lt != type::a && i == oend)
+ append_options (args, t, "cxx.loptions");
+
+ args.push_back (sargs[i].c_str ());
+ }
+
+ if (lt != type::a)
+ append_options (args, t, "cxx.libs");
+
+ args.push_back (nullptr);
+
+ if (verb >= 2)
+ print_process (args);
+ else if (verb)
+ text << "ld " << t;
+
+ try
+ {
+ process pr (args.data ());
+
+ if (!pr.wait ())
+ throw failed ();
+
+ // Should we go to the filesystem and get the new mtime? We
+ // know the file has been modified, so instead just use the
+ // current clock time. It has the advantage of having the
+ // subseconds precision.
+ //
+ t.mtime (system_clock::now ());
+ return target_state::changed;
+ }
+ catch (const process_error& e)
+ {
+ error << "unable to execute " << args[0] << ": " << e.what ();
+
+ // In a multi-threaded program that fork()'ed but did not exec(),
+ // it is unwise to try to do any kind of cleanup (like unwinding
+ // the stack and running destructors).
+ //
+ if (e.child ())
+ exit (1);
+
+ throw failed ();
+ }
+ }
+
+ link link::instance;
+ }
+}