Age | Commit message (Collapse) | Author | Files | Lines |
|
|
|
|
|
Explicit target{} should be used instead. Also, in this context, absent target
type is now treated as file{} rather than target{}, for consistency with all
other cases.
|
|
An ad hoc pattern rule consists of a pattern that mimics a dependency
declaration followed by one or more recipes. For example:
exe{~'/(.*)/'}: cxx{~'/\1/'}
{{
$cxx.path -o $path($>) $path($<[0])
}}
If a pattern matches a dependency declaration of a target, then the recipe is
used to perform the corresponding operation on this target. For example, the
following dependency declaration matches the above pattern which means the
rule's recipe will be used to update this target:
exe{hello}: cxx{hello}
While the following declarations do not match the above pattern:
exe{hello}: c{hello} # Type mismatch.
exe{hello}: cxx{howdy} # Name mismatch.
On the left hand side of `:` in the pattern we can have a single target or an
ad hoc target group. The single target or the first (primary) ad hoc group
member must be a regex pattern (~). The rest of the ad hoc group members can
be patterns or substitutions (^). For example:
<exe{~'/(.*)/'} file{^'/\1.map/'}>: cxx{~'/\1/'}
{{
$cxx.path -o $path($>[0]) "-Wl,-Map=$path($>[1])" $path($<[0])
}}
On the left hand side of `:` in the pattern we have prerequisites which can
be patterns, substitutions, or non-patterns. For example:
<exe{~'/(.*)/'} file{^'/\1.map/'}>: cxx{~'/\1/'} hxx{^'/\1/'} hxx{common}
{{
$cxx.path -o $path($>[0]) "-Wl,-Map=$path($>[1])" $path($<[0])
}}
Substitutions on the left hand side of `:` and substitutions and non-patterns
on the right hand side are added to the dependency declaration. For example,
given the above rule and dependency declaration, the effective dependency is
going to be:
<exe{hello} file{hello.map>: cxx{hello} hxx{hello} hxx{common}
|
|
|
|
This is in addition to the already supported path-based target type/pattern
specific variables. For example:
hxx{*}: x = y # path-based
hxx{~/.*/}: x = y # regex-based
|
|
Use this to relax the pattern inclusion/exclusion syntax to only require
unquoted +/-.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
See the config.cxx.translate_include variable documentation in cxx/init.cxx
for details.
|
|
|
|
|
|
depdeb preamble
|
|
|
|
Now triple dot and escape sequence can appear almost anywhere in the target
name (see target::split_name() for details).
|
|
|
|
|
|
This is for consistency with version constraints in manifest.
|
|
|
|
Specifically, they are reserved for future support of arithmetic evaluation
contexts and evaluation pipelines, respectively.
|
|
|
|
|
|
Before the block used to apply to the set of prerequisites before the last
`:`. This turned out to be counterintuitive and not very useful since
prerequisite-specific variables are a lot less common than target specific.
And it doesn't fit with ad hoc recipes.
The new rule is if the chain ends with `:`, then the block applies to the last
set of prerequisites. Otherwise, it applies to the last set of targets. For
example:
./: exe{test}: cxx{main}
{
test = true # Applies to the exe{test} target.
}
./: exe{test}: libue{test}:
{
bin.whole = false # Applies to the libue{test} prerequisite.
}
This is actually consistent with both non-chain and non-block cases.
Consider:
exe{test}: cxx{main}
{
test = true
}
exe{test}: libue{test}:
{
bin.whole = false
}
exe{test}: libue{test}: bin.whole = false
The only exception we now have in this overall approach of "if the
dependency declaration ends with a colon, then what follows is for a
prerequisite" is for the first semicolon:
exe{test}:
{
test = true
}
exe{test}: test = true
But that's probably intuitive enough since there cannot be a prerequisite
without a target.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Specifically, now we can write:
{{ c++ 1 --
#include <map>
--
recipe
apply (action, target&) const override
{
...
}
}}
|
|
We are reusing the buildspec syntax for that.
|
|
|
|
Also deduce the recipe name.
|
|
This will allow us to deal with backward-incompatible changes to cxx_rule
interface and semantics.
|
|
|
|
|
|
|
|
Value subscript is only recognized in evaluation contexts (due to ambiguity
with wildcard patterns; consider: $x[123].txt) and should be unseparated from
the previous token. For example:
x = ($y[1])
x = (($f ? $y : $z)[1])
x = ($identity($y)[$z])
|
|
|
|
|
|
Specifically, now the following does the right thing:
print +foo
|
|
|
|
Specifically, now config.<tool> (like config.cli) is handled by the import
machinery (it is like a shorter alias for config.import.<tool>.<tool>.exe
that we already had). And the cli module now uses that instead of custom
logic.
This also adds support for uniform tool metadata extraction that is handled by
the import machinery. As a result, a tool that follows the "build2 way" can be
imported with metadata by the buildfile and/or corresponding module without
any tool-specific code or brittleness associated with parsing --version or
similar outputs. See the cli tool/module for details.
Finally, two new flavors of the import directive are now supported: import!
triggers immediate importation skipping any rule-specific logic while import?
is optional import (analogous to using?). Note that optional import is always
immediate. There is also the import-specific metadata attribute which can be
specified for these two import flavors in order to trigger metadata
importation. For example:
import? [metadata] cli = cli%exe{cli}
if ($cli != [null])
info "cli version $($cli:cli.version)"
|
|
|