// file : build/parser.cxx -*- C++ -*- // copyright : Copyright (c) 2014-2015 Code Synthesis Ltd // license : MIT; see accompanying LICENSE file #include <build/parser> #include <cctype> // is{alpha alnum}() #include <memory> // unique_ptr #include <fstream> #include <utility> // move() #include <iterator> // make_move_iterator() #include <iostream> #include <build/types> #include <build/utility> #include <build/version> #include <build/token> #include <build/lexer> #include <build/scope> #include <build/target> #include <build/prerequisite> #include <build/variable> #include <build/module> #include <build/file> #include <build/diagnostics> #include <build/context> using namespace std; namespace build { static location get_location (const token&, const void*); typedef token_type type; void parser:: parse_buildfile (istream& is, const path& p, scope& root, scope& base) { enter_buildfile (p); string rw (diag_relative (p)); // Relative to work. path_ = &rw; lexer l (is, rw); lexer_ = &l; target_ = nullptr; scope_ = &base; root_ = &root; default_target_ = nullptr; token t (type::eos, false, 0, 0); type tt; next (t, tt); clause (t, tt); if (tt != type::eos) fail (t) << "unexpected " << t; process_default_target (t); } token parser:: parse_variable (lexer& l, scope& s, string name, type kind) { path_ = &l.name (); lexer_ = &l; target_ = nullptr; scope_ = &s; type tt; token t (type::eos, false, 0, 0); variable (t, tt, name, kind); return t; } void parser:: clause (token& t, type& tt) { tracer trace ("parser::clause", &path_); // clause() should always stop at a token that is at the beginning of // the line (except for eof). That is, if something is called to parse // a line, it should parse it until newline (or fail). This is important // for if-else blocks, directory scopes, etc., that assume the } token // they see is on the new line. // while (tt != type::eos) { // We always start with one or more names. // if (tt != type::name && tt != type::lcbrace && // Untyped name group: '{foo ...' tt != type::dollar && // Variable expansion: '$foo ...' tt != type::lparen && // Eval context: '(foo) ...' tt != type::colon) // Empty name: ': ...' break; // Something else. Let our caller handle that. // See if this is one of the directives. // if (tt == type::name && keyword (t)) { const string& n (t.value); if (n == "print") { // @@ Is this the only place where it is valid? Probably also // in var namespace. // print (t, tt); continue; } else if (n == "source") { source (t, tt); continue; } else if (n == "include") { include (t, tt); continue; } else if (n == "import") { import (t, tt); continue; } else if (n == "export") { export_ (t, tt); continue; } else if (n == "using" || n == "using?") { using_ (t, tt); continue; } else if (n == "define") { define (t, tt); continue; } else if (n == "if" || n == "if!") { if_else (t, tt); continue; } else if (n == "else" || n == "elif" || n == "elif!") { // Valid ones are handled in if_else(). // fail (t) << n << " without if"; } } // ': foo' is equvalent to '{}: foo' and to 'dir{}: foo'. // const location nloc (get_location (t, &path_)); names_type ns (tt != type::colon ? names (t, tt) : names_type ({name ("dir", string ())})); if (tt == type::colon) { // While '{}:' means empty name, '{$x}:' where x is empty list // means empty list. // if (ns.empty ()) fail (t) << "target expected before :"; next (t, tt); if (tt == type::newline) { // See if this is a directory/target scope. // if (peek () == type::lcbrace) { next (t, tt); // Should be on its own line. // if (next (t, tt) != type::newline) fail (t) << "expected newline after {"; // See if this is a directory or target scope. Different // things can appear inside depending on which one it is. // bool dir (false); for (const auto& n: ns) { // A name represents directory as an empty value. // if (n.directory ()) { if (ns.size () != 1) { // @@ TODO: point to name (and above). // fail (nloc) << "multiple names in directory scope"; } dir = true; } } next (t, tt); if (dir) { // Directory scope. // dir_path p (move (ns[0].dir)); // Steal. // Relative scopes are opened relative to out, not src. // if (p.relative ()) p = scope_->out_path () / p; p.normalize (); scope* ors (root_); scope* ocs (scope_); switch_scope (p); // A directory scope can contain anything that a top level can. // clause (t, tt); scope_ = ocs; root_ = ors; } else { // @@ TODO: target scope. } if (tt != type::rcbrace) fail (t) << "expected } instead of " << t; // Should be on its own line. // if (next (t, tt) == type::newline) next (t, tt); else if (tt != type::eos) fail (t) << "expected newline after }"; continue; } // If this is not a scope, then it is a target without any // prerequisites. // } // Dependency declaration or scope/target-specific variable // assignment. // if (tt == type::name || tt == type::lcbrace || tt == type::dollar || tt == type::lparen || tt == type::newline || tt == type::eos) { const location ploc (get_location (t, &path_)); names_type pns (tt != type::newline && tt != type::eos ? names (t, tt) : names_type ()); // Common target entering code used in both cases. // auto enter_target = [this, &nloc, &trace] (name&& tn) -> target& { const string* e; const target_type* ti (scope_->find_target_type (tn, e)); if (ti == nullptr) fail (nloc) << "unknown target type " << tn.type; path& d (tn.dir); if (d.empty ()) d = scope_->out_path (); // Already normalized. else { if (d.relative ()) d = scope_->out_path () / d; d.normalize (); } // Find or insert. // return targets.insert ( *ti, move (tn.dir), move (tn.value), e, trace).first; }; // Scope/target-specific variable assignment. // if (tt == type::equal || tt == type::plus_equal) { string v (variable_name (move (pns), ploc)); // Enter the target/scope and set it as current. // if (ns.size () != 1) fail (nloc) << "multiple names in scope/target-specific " << "variable assignment"; name& n (ns[0]); if (n.qualified ()) fail (nloc) << "project name in scope/target " << n; if (n.directory ()) { // The same code as in directory scope handling code above. // dir_path p (move (n.dir)); if (p.relative ()) p = scope_->out_path () / p; p.normalize (); scope* ors (root_); scope* ocs (scope_); switch_scope (p); variable (t, tt, move (v), tt); scope_ = ocs; root_ = ors; } else { // Figure out if this is a target or type/pattern specific // variable. // size_t p (n.value.find ('*')); if (p == string::npos) { target* ot (target_); target_ = &enter_target (move (n)); variable (t, tt, move (v), tt); target_ = ot; } else { // See tests/variable/type-pattern. // if (!n.dir.empty ()) fail (nloc) << "directory in target type/pattern " << n; if (n.value.find ('*', p + 1) != string::npos) fail (nloc) << "multiple wildcards in target type/pattern " << n; // Resolve target type. If none is specified, use the root // of the hierarchy. // const target_type* ti ( n.untyped () ? &target::static_type : scope_->find_target_type (n.type)); if (ti == nullptr) fail (nloc) << "unknown target type " << n.type; if (tt == type::plus_equal) fail (t) << "append to target type/pattern-specific " << "variable " << v; const auto& var (var_pool.find (move (v))); // Note: expand variables in the value in the context of // the scope. // names_type vns (variable_value (t, tt, var)); value& val ( scope_->target_vars[*ti][move (n.value)].assign (var).first); val.assign (move (vns), var); } } } // Dependency declaration. // else { // Prepare the prerequisite list. // target::prerequisites_type ps; ps.reserve (pns.size ()); for (auto& pn: pns) { const string* e; const target_type* ti (scope_->find_target_type (pn, e)); if (ti == nullptr) fail (ploc) << "unknown target type " << pn.type; pn.dir.normalize (); // Find or insert. // prerequisite& p ( scope_->prerequisites.insert ( pn.proj, *ti, move (pn.dir), move (pn.value), e, *scope_, trace).first); ps.emplace_back (p); } for (auto& tn: ns) { if (tn.qualified ()) fail (nloc) << "project name in target " << tn; target& t (enter_target (move (tn))); //@@ OPT: move if last/single target (common cases). // t.prerequisites.insert (t.prerequisites.end (), ps.begin (), ps.end ()); if (default_target_ == nullptr) default_target_ = &t; } } if (tt == type::newline) next (t, tt); else if (tt != type::eos) fail (t) << "expected newline instead of " << t; continue; } if (tt == type::eos) continue; fail (t) << "expected newline instead of " << t; } // Variable assignment. // if (tt == type::equal || tt == type::plus_equal) { variable (t, tt, variable_name (move (ns), nloc), tt); if (tt == type::newline) next (t, tt); else if (tt != type::eos) fail (t) << "expected newline instead of " << t; continue; } // Allow things like function calls that don't result in anything. // if (tt == type::newline && ns.empty ()) { next (t, tt); continue; } fail (t) << "unexpected " << t; } } void parser:: source (token& t, type& tt) { tracer trace ("parser::source", &path_); // The rest should be a list of buildfiles. Parse them as names // to get variable expansion and directory prefixes. // lexer_->mode (lexer_mode::value); next (t, tt); const location l (get_location (t, &path_)); names_type ns (tt != type::newline && tt != type::eos ? names (t, tt) : names_type ()); for (name& n: ns) { if (n.qualified () || n.empty () || n.value.empty ()) fail (l) << "expected buildfile instead of " << n; // Construct the buildfile path. // path p (move (n.dir)); p /= path (move (n.value)); // If the path is relative then use the src directory corresponding // to the current directory scope. // if (root_->src_path_ != nullptr && p.relative ()) p = src_out (scope_->out_path (), *root_) / p; p.normalize (); try { ifstream ifs (p.string ()); if (!ifs.is_open ()) fail (l) << "unable to open " << p; ifs.exceptions (ifstream::failbit | ifstream::badbit); level5 ([&]{trace (t) << "entering " << p;}); enter_buildfile (p); string rw (diag_relative (p)); // Relative to work. const string* op (path_); path_ = &rw; lexer l (ifs, rw); lexer* ol (lexer_); lexer_ = &l; token t (type::eos, false, 0, 0); type tt; next (t, tt); clause (t, tt); if (tt != type::eos) fail (t) << "unexpected " << t; level5 ([&]{trace (t) << "leaving " << p;}); lexer_ = ol; path_ = op; } catch (const ifstream::failure&) { fail (l) << "unable to read buildfile " << p; } } if (tt == type::newline) next (t, tt); else if (tt != type::eos) fail (t) << "expected newline instead of " << t; } void parser:: include (token& t, type& tt) { tracer trace ("parser::include", &path_); if (root_->src_path_ == nullptr) fail (t) << "inclusion during bootstrap"; // The rest should be a list of buildfiles. Parse them as names // to get variable expansion and directory prefixes. // lexer_->mode (lexer_mode::value); next (t, tt); const location l (get_location (t, &path_)); names_type ns (tt != type::newline && tt != type::eos ? names (t, tt) : names_type ()); for (name& n: ns) { if (n.qualified () || n.empty ()) fail (l) << "expected buildfile instead of " << n; // Construct the buildfile path. If it is a directory, then append // 'buildfile'. // path p (move (n.dir)); if (n.value.empty ()) p /= path ("buildfile"); else { bool d (path::traits::is_separator (n.value.back ()) || n.type == "dir"); p /= path (move (n.value)); if (d) p /= path ("buildfile"); } level6 ([&]{trace (l) << "relative path " << p;}); // Determine new out_base. // dir_path out_base; if (p.relative ()) { out_base = scope_->out_path () / p.directory (); out_base.normalize (); } else { p.normalize (); // Make sure the path is in this project. Include is only meant // to be used for intra-project inclusion (plus amalgamation). // bool in_out (false); if (!p.sub (root_->src_path ()) && !(in_out = p.sub (root_->out_path ()))) fail (l) << "out of project include " << p; out_base = in_out ? p.directory () : out_src (p.directory (), *root_); } // Switch the scope. Note that we need to do this before figuring // out the absolute buildfile path since we may switch the project // root and src_root with it (i.e., include into a sub-project). // scope* ors (root_); scope* ocs (scope_); switch_scope (out_base); // Use the new scope's src_base to get absolute buildfile path // if it is relative. // if (p.relative ()) p = scope_->src_path () / p.leaf (); level6 ([&]{trace (l) << "absolute path " << p;}); if (!root_->buildfiles.insert (p).second) // Note: may be "new" root. { level5 ([&]{trace (l) << "skipping already included " << p;}); scope_ = ocs; root_ = ors; continue; } try { ifstream ifs (p.string ()); if (!ifs.is_open ()) fail (l) << "unable to open " << p; ifs.exceptions (ifstream::failbit | ifstream::badbit); level5 ([&]{trace (t) << "entering " << p;}); enter_buildfile (p); string rw (diag_relative (p)); // Relative to work. const string* op (path_); path_ = &rw; lexer l (ifs, rw); lexer* ol (lexer_); lexer_ = &l; target* odt (default_target_); default_target_ = nullptr; token t (type::eos, false, 0, 0); type tt; next (t, tt); clause (t, tt); if (tt != type::eos) fail (t) << "unexpected " << t; process_default_target (t); level5 ([&]{trace (t) << "leaving " << p;}); default_target_ = odt; lexer_ = ol; path_ = op; } catch (const ifstream::failure&) { fail (l) << "unable to read buildfile " << p; } scope_ = ocs; root_ = ors; } if (tt == type::newline) next (t, tt); else if (tt != type::eos) fail (t) << "expected newline instead of " << t; } void parser:: import (token& t, type& tt) { tracer trace ("parser::import", &path_); if (root_->src_path_ == nullptr) fail (t) << "import during bootstrap"; next (t, tt); // General import format: // // import [<var>=](<project>|<project>/<target>])+ // value* val (nullptr); const build::variable* var (nullptr); type at; // Assignment type. if (tt == type::name) { at = peek (); if (at == type::equal || at == type::plus_equal) { var = &var_pool.find (t.value); val = at == type::equal ? &scope_->assign (*var) : &scope_->append (*var); next (t, tt); // Consume =/+=. lexer_->mode (lexer_mode::value); next (t, tt); } } // The rest should be a list of projects and/or targets. Parse // them as names to get variable expansion and directory prefixes. // const location l (get_location (t, &path_)); names_type ns (tt != type::newline && tt != type::eos ? names (t, tt) : names_type ()); for (name& n: ns) { // build::import() will check the name, if required. // names_type r (build::import (*scope_, move (n), l)); if (val != nullptr) { if (at == type::equal) val->assign (move (r), *var); else val->append (move (r), *var); } } if (tt == type::newline) next (t, tt); else if (tt != type::eos) fail (t) << "expected newline instead of " << t; } void parser:: export_ (token& t, type& tt) { tracer trace ("parser::export", &path_); scope* ps (scope_->parent_scope ()); // This should be temp_scope. // if (ps == nullptr || ps->out_path () != scope_->out_path ()) fail (t) << "export outside export stub"; // The rest is a value. Parse it as names to get variable expansion. // build::import() will check the names, if required. // lexer_->mode (lexer_mode::value); next (t, tt); if (tt != type::newline && tt != type::eos) export_value_ = names (t, tt); if (tt == type::newline) next (t, tt); else if (tt != type::eos) fail (t) << "expected newline instead of " << t; } void parser:: using_ (token& t, type& tt) { tracer trace ("parser::using", &path_); bool optional (t.value.back () == '?'); // The rest should be a list of module names. Parse them as names // to get variable expansion, etc. // lexer_->mode (lexer_mode::pairs, '@'); next (t, tt); const location l (get_location (t, &path_)); names_type ns (tt != type::newline && tt != type::eos ? names (t, tt) : names_type ()); for (auto i (ns.begin ()); i != ns.end (); ++i) { string n, v; if (!i->simple ()) fail (l) << "module name expected instead of " << *i; n = move (i->value); if (i->pair) { ++i; if (!i->simple ()) fail (l) << "module version expected instead of " << *i; v = move (i->value); } // Handle the special 'build' module. // if (n == "build") { if (!v.empty ()) { unsigned int iv; try {iv = to_version (v);} catch (const invalid_argument& e) { fail (l) << "invalid version '" << v << "': " << e.what (); } if (iv > BUILD_VERSION) fail (l) << "build2 " << v << " required" << info << "running build2 " << BUILD_VERSION_STR; } } else { assert (v.empty ()); // Module versioning not yet implemented. load_module (optional, n, *root_, *scope_, l); } } if (tt == type::newline) next (t, tt); else if (tt != type::eos) fail (t) << "expected newline instead of " << t; } static target* derived_factory (const target_type& t, dir_path d, string n, const string* e) { target* r (t.base->factory (*t.base, move (d), move (n), e)); r->derived_type = &t; return r; } constexpr const char derived_ext_var[] = "extension"; void parser:: define (token& t, type& tt) { // define <derived>: <base> // // See tests/define. // if (next (t, tt) != type::name) fail (t) << "expected name instead of " << t << " in target type " << "definition"; string dn (move (t.value)); const location dnl (get_location (t, &path_)); if (next (t, tt) != type::colon) fail (t) << "expected ':' instead of " << t << " in target type " << "definition"; next (t, tt); if (tt == type::name) { // Target. // const string& bn (t.value); const target_type* bt (scope_->find_target_type (bn)); if (bt == nullptr) fail (t) << "unknown target type " << bn; unique_ptr<target_type> dt (new target_type (*bt)); dt->base = bt; dt->factory = &derived_factory; // Override extension derivation function: we most likely don't want // to use the same default as our base (think cli: file). // dt->extension = &target_extension_var<derived_ext_var, nullptr>; target_type& rdt (*dt); // Save a non-const reference to the object. auto pr (scope_->target_types.emplace (dn, target_type_ref (move (dt)))); if (!pr.second) fail (dnl) << "target type " << dn << " already define in this scope"; // Patch the alias name to use the map's key storage. // rdt.name = pr.first->first.c_str (); next (t, tt); // Get newline. } else fail (t) << "expected name instead of " << t << " in target type " << "definition"; if (tt == type::newline) next (t, tt); else if (tt != type::eos) fail (t) << "expected newline instead of " << t; } void parser:: if_else (token& t, type& tt) { // Handle the whole if-else chain. See tests/if-else. // bool taken (false); // One of the branches has been taken. for (;;) { string k (move (t.value)); next (t, tt); bool take (false); // Take this branch? if (k != "else") { // Should we evaluate the expression if one of the branches has // already been taken? On the one hand, evaluating it is a waste // of time. On the other, it can be invalid and the only way for // the user to know their buildfile is valid is to test every // branch. There could also be side effects. We also have the same // problem with ignored branch blocks except there evaluating it // is not an option. So let's skip it. // if (taken) skip_line (t, tt); else { if (tt == type::newline || tt == type::eos) fail (t) << "expected " << k << "-expression instead of " << t; // Parse as names to get variable expansion, evaluation, etc. // const location nsl (get_location (t, &path_)); names_type ns (names (t, tt)); // Should evaluate to true or false. // if (ns.size () != 1 || !value_traits<bool>::assign (ns[0])) fail (nsl) << "expected " << k << "-expression to evaluate to " << "'true' or 'false' instead of '" << ns << "'"; bool e (ns[0].value == "true"); take = (k.back () == '!' ? !e : e); } } else take = !taken; if (tt != type::newline) fail (t) << "expected newline instead of " << t << " after " << k << (k != "else" ? "-expression" : ""); if (next (t, tt) != type::lcbrace) fail (t) << "expected { instead of " << t << " at the beginning of " << k << "-block"; if (next (t, tt) != type::newline) fail (t) << "expected newline after {"; next (t, tt); if (take) { clause (t, tt); taken = true; } else skip_block (t, tt); if (tt != type::rcbrace) fail (t) << "expected } instead of " << t << " at the end of " << k << "-block"; next (t, tt); if (tt == type::newline) next (t, tt); else if (tt != type::eos) fail (t) << "expected newline after }"; // See if we have another el* keyword. // if (k != "else" && tt == type::name && keyword (t)) { const string& n (t.value); if (!t.quoted && (n == "else" || n == "elif" || n == "elif!")) continue; } break; } } void parser:: print (token& t, type& tt) { // Parse the rest as names to get variable expansion, etc. Switch // to the variable value lexing mode so that we don't treat special // characters (e.g., ':') as the end of the names. // lexer_->mode (lexer_mode::value); next (t, tt); names_type ns (tt != type::newline && tt != type::eos ? names (t, tt) : names_type ()); cout << ns << endl; if (tt != type::eos) next (t, tt); // Swallow newline. } string parser:: variable_name (names_type&& ns, const location& l) { // The list should contain a single, simple name. // if (ns.size () != 1 || !ns[0].simple () || ns[0].empty ()) fail (l) << "variable name expected instead of " << ns; string& n (ns[0].value); if (n.front () == '.') // Fully qualified name. return string (n, 1, string::npos); else //@@ TODO: append namespace if any. return move (n); } void parser:: variable (token& t, type& tt, string name, type kind) { const auto& var (var_pool.find (move (name))); names_type vns (variable_value (t, tt, var)); if (kind == type::equal) { value& v (target_ != nullptr ? target_->assign (var) : scope_->assign (var)); v.assign (move (vns), var); } else { value& v (target_ != nullptr ? target_->append (var) : scope_->append (var)); v.append (move (vns), var); } } names parser:: variable_value (token& t, type& tt, const variable_type& var) { if (var.pairs != '\0') lexer_->mode (lexer_mode::pairs, var.pairs); else lexer_->mode (lexer_mode::value); next (t, tt); return (tt != type::newline && tt != type::eos ? names (t, tt) : names_type ()); } parser::names_type parser:: eval (token& t, type& tt) { lexer_->mode (lexer_mode::eval); next (t, tt); names_type ns (tt != type::rparen ? names (t, tt) : names_type ()); if (tt != type::rparen) fail (t) << "expected ')' instead of " << t; return ns; } // Parse names inside {} and handle the following "crosses" (i.e., // {a b}{x y}) if any. Return the number of names added to the list. // size_t parser:: names_trailer (token& t, type& tt, names_type& ns, size_t pair, const string* pp, const dir_path* dp, const string* tp) { next (t, tt); // Get what's after '{'. size_t count (ns.size ()); names (t, tt, ns, false, (pair != 0 ? pair : (ns.empty () || ns.back ().pair == '\0' ? 0 : ns.size ())), pp, dp, tp); count = ns.size () - count; if (tt != type::rcbrace) fail (t) << "expected } instead of " << t; // See if we have a cross. See tests/names. // if (peek () == type::lcbrace && !peeked ().separated) { next (t, tt); // Get '{'. const location loc (get_location (t, &path_)); names_type x; // Parse into a separate list of names. names_trailer (t, tt, x, 0, nullptr, nullptr, nullptr); if (size_t n = x.size ()) { // Now cross the last 'count' names in 'ns' with 'x'. First we will // allocate n - 1 additional sets of last 'count' names in 'ns'. // size_t b (ns.size () - count); // Start of 'count' names. ns.reserve (ns.size () + count * (n - 1)); for (size_t i (0); i != n - 1; ++i) for (size_t j (0); j != count; ++j) ns.push_back (ns[b + j]); // Now cross each name, this time including the first set. // for (size_t i (0); i != n; ++i) { for (size_t j (0); j != count; ++j) { name& l (ns[b + i * count + j]); const name& r (x[i]); // Move the project names. // if (r.proj != nullptr) { if (l.proj != nullptr) fail (loc) << "nested project name " << *r.proj; l.proj = r.proj; } // Merge directories. // if (!r.dir.empty ()) { if (l.dir.empty ()) l.dir = move (r.dir); else l.dir /= r.dir; } // Figure out the type. As a first step, "promote" the lhs value // to type. // if (!l.value.empty ()) { if (!l.type.empty ()) fail (loc) << "nested type name " << l.value; l.type.swap (l.value); } if (!r.type.empty ()) { if (!l.type.empty ()) fail (loc) << "nested type name " << r.type; l.type = move (r.type); } l.value = move (r.value); // @@ TODO: need to handle pairs on lhs. I think all that needs // to be done is skip pair's first elements. Maybe also check // that there are no pairs on the rhs. There is just no easy // way to enable the pairs mode to test it, yet. } } count *= n; } } return count; } void parser:: names (token& t, type& tt, names_type& ns, bool chunk, size_t pair, const string* pp, const dir_path* dp, const string* tp) { // If pair is not 0, then it is an index + 1 of the first half of // the pair for which we are parsing the second halves, e.g., // a={b c d{e f} {}}. // // Buffer that is used to collect the complete name in case of // an unseparated variable expansion or eval context, e.g., // 'foo$bar($baz)fox'. The idea is to concatenate all the // individual parts in this buffer and then re-inject it into // the loop as a single token. // string concat; // Number of names in the last group. This is used to detect when // we need to add an empty first pair element (e.g., {=y}) or when // we have a for now unsupported multi-name LHS (e.g., {x y}=z). // size_t count (0); for (bool first (true);; first = false) { // If the accumulating buffer is not empty, then we have two options: // continue accumulating or inject. We inject if the next token is // not a name, var expansion, or eval context or if it is separated. // if (!concat.empty () && ((tt != type::name && tt != type::dollar && tt != type::lparen) || peeked ().separated)) { tt = type::name; t = token (move (concat), true, false, t.line, t.column); concat.clear (); } else if (!first) { // If we are chunking, stop at the next separated token. Unless // current or next token is a pair separator, since we want the // "x = y" pair to be parsed as a single chunk. // bool p (t.type == type::pair_separator); // Current token. next (t, tt); if (chunk && t.separated && (tt != type::pair_separator && !p)) break; } // Name. // if (tt == type::name) { string name (t.value); //@@ move? tt = peek (); // Should we accumulate? If the buffer is not empty, then // we continue accumulating (the case where we are separated // should have been handled by the injection code above). If // the next token is a var expansion or eval context and it // is not separated, then we need to start accumulating. // if (!concat.empty () || // Continue. ((tt == type::dollar || tt == type::lparen) && !peeked ().separated)) // Start. { concat += name; continue; } string::size_type p (name.find_last_of ("/%")); // First take care of project. A project-qualified name is // not very common, so we can afford some copying for the // sake of simplicity. // const string* pp1 (pp); if (p != string::npos) { bool last (name[p] == '%'); string::size_type p1 (last ? p : name.rfind ('%', p - 1)); if (p1 != string::npos) { string proj; proj.swap (name); // First fix the rest of the name. // name.assign (proj, p1 + 1, string::npos); p = last ? string::npos : p - (p1 + 1); // Now process the project name. // @@ Validate it. // proj.resize (p1); if (pp != nullptr) fail (t) << "nested project name " << proj; pp1 = &project_name_pool.find (proj); } } string::size_type n (p != string::npos ? name.size () - 1 : 0); // See if this is a type name, directory prefix, or both. That // is, it is followed by an un-separated '{'. // if (tt == type::lcbrace && !peeked ().separated) { next (t, tt); if (p != n && tp != nullptr) fail (t) << "nested type name " << name; dir_path d1; const dir_path* dp1 (dp); string t1; const string* tp1 (tp); if (p == string::npos) // type tp1 = &name; else if (p == n) // directory { if (dp == nullptr) d1 = dir_path (name); else d1 = *dp / dir_path (name); dp1 = &d1; } else // both { t1.assign (name, p + 1, n - p); if (dp == nullptr) d1 = dir_path (name, 0, p + 1); else d1 = *dp / dir_path (name, 0, p + 1); dp1 = &d1; tp1 = &t1; } count = names_trailer (t, tt, ns, pair, pp1, dp1, tp1); tt = peek (); continue; } // If we are a second half of a pair, add another first half // unless this is the first instance. // if (pair != 0 && pair != ns.size ()) ns.push_back (ns[pair - 1]); count = 1; // If it ends with a directory separator, then it is a directory. // Note that at this stage we don't treat '.' and '..' as special // (unless they are specified with a directory separator) because // then we would have ended up treating '.: ...' as a directory // scope. Instead, this is handled higher up the processing chain, // in target_types::find(). This would also mess up reversibility // to simple name. // // @@ TODO: and not quoted // if (p == n) { // For reversibility to simple name, only treat it as a directory // if the string is an exact representation. // if (p != 0 && name[p - 1] != '/') // Take care of the "//" case. name.resize (p); // Strip trailing '/'. dir_path dir (move (name), dir_path::exact); if (!dir.empty ()) { if (dp != nullptr) dir = *dp / dir; ns.emplace_back (pp1, move (dir), (tp != nullptr ? *tp : string ()), string ()); continue; } // Add the trailing slash back and treat it as a simple name. // if (p != 0 && name[p - 1] != '/') name.push_back ('/'); } ns.emplace_back (pp1, (dp != nullptr ? *dp : dir_path ()), (tp != nullptr ? *tp : string ()), move (name)); continue; } // Variable expansion/function call or eval context. // if (tt == type::dollar || tt == type::lparen) { // These two cases are pretty similar in that in both we // pretty quickly end up with a list of names that we need // to splice into the result. // names_type lv_data; const names_type* plv; location loc; const char* what; // Variable or evaluation context. if (tt == type::dollar) { // Switch to the variable name mode. We want to use this // mode for $foo but not for $(foo). Since we don't know // whether the next token is a paren or a name, we turn // it on and switch to the eval mode if what we get next // is a paren. // lexer_->mode (lexer_mode::variable); next (t, tt); loc = get_location (t, &path_); string n; if (tt == type::name) n = t.value; else if (tt == type::lparen) { lexer_->expire_mode (); names_type ns (eval (t, tt)); // Make sure the result of evaluation is a single, simple name. // if (ns.size () != 1 || !ns.front ().simple ()) fail (loc) << "variable/function name expected instead of '" << ns << "'"; n = move (ns.front ().value); } else fail (t) << "variable/function name expected instead of " << t; if (n.empty ()) fail (loc) << "empty variable/function name"; // Figure out whether this is a variable expansion or a function // call. // tt = peek (); if (tt == type::lparen) { next (t, tt); // Get '('. names_type ns (eval (t, tt)); // Just a stub for now. // cout << n << "(" << ns << ")" << endl; tt = peek (); if (lv_data.empty ()) continue; plv = &lv_data; what = "function call"; } else { // Process variable name. // if (n.front () == '.') // Fully qualified name. n.erase (0, 1); else { //@@ TODO: append namespace if any. } // Lookup. // const auto& var (var_pool.find (move (n))); auto l (target_ != nullptr ? (*target_)[var] : (*scope_)[var]); // Undefined/NULL namespace variables are not allowed. // if (!l && var.name.find ('.') != string::npos) fail (loc) << "undefined/null namespace variable " << var.name; if (!l || l->empty ()) continue; plv = &l->data_; what = "variable expansion"; } } else { loc = get_location (t, &path_); lv_data = eval (t, tt); tt = peek (); if (lv_data.empty ()) continue; plv = &lv_data; what = "context evaluation"; } // @@ Could move if (lv == &lv_data). // const names_type& lv (*plv); // Should we accumulate? If the buffer is not empty, then // we continue accumulating (the case where we are separated // should have been handled by the injection code above). If // the next token is a name or var expansion and it is not // separated, then we need to start accumulating. // if (!concat.empty () || // Continue. ((tt == type::name || // Start. tt == type::dollar || tt == type::lparen) && !peeked ().separated)) { // This should be a simple value or a simple directory. The // token still points to the name (or closing paren). // if (lv.size () > 1) fail (loc) << "concatenating " << what << " contains multiple " << "values"; const name& n (lv[0]); if (n.qualified ()) fail (loc) << "concatenating " << what << " contains project name"; if (n.typed ()) fail (loc) << "concatenating " << what << " contains type"; if (!n.dir.empty ()) { if (!n.value.empty ()) fail (loc) << "concatenating " << what << " contains directory"; concat += n.dir.string (); } else concat += n.value; } else { // Copy the names from the variable into the resulting name list // while doing sensible things with the types and directories. // for (const name& n: lv) { const string* pp1 (pp); const dir_path* dp1 (dp); const string* tp1 (tp); if (n.proj != 0) { if (pp == nullptr) pp1 = n.proj; else fail (loc) << "nested project name " << *n.proj << " in " << what; } dir_path d1; if (!n.dir.empty ()) { if (dp != nullptr) { if (n.dir.absolute ()) fail (loc) << "nested absolute directory " << n.dir << " in " << what; d1 = *dp / n.dir; dp1 = &d1; } else dp1 = &n.dir; } if (!n.type.empty ()) { if (tp == nullptr) tp1 = &n.type; else fail (loc) << "nested type name " << n.type << " in " << what; } // If we are a second half of a pair. // if (pair != 0) { // Check that there are no nested pairs. // if (n.pair != '\0') fail (loc) << "nested pair in " << what; // And add another first half unless this is the first instance. // if (pair != ns.size ()) ns.push_back (ns[pair - 1]); } ns.emplace_back (pp1, (dp1 != nullptr ? *dp1 : dir_path ()), (tp1 != nullptr ? *tp1 : string ()), n.value); ns.back ().pair = n.pair; } count = lv.size (); } continue; } // Untyped name group without a directory prefix, e.g., '{foo bar}'. // if (tt == type::lcbrace) { count = names_trailer (t, tt, ns, pair, pp, dp, tp); tt = peek (); continue; } // A pair separator (only in the pairs mode). // if (tt == type::pair_separator) { if (pair != 0) fail (t) << "nested pair on the right hand side of a pair"; if (count > 1) fail (t) << "multiple names on the left hand side of a pair"; if (count == 0) { // Empty LHS, (e.g., {=y}), create an empty name. // ns.emplace_back (pp, (dp != nullptr ? *dp : dir_path ()), (tp != nullptr ? *tp : string ()), string ()); count = 1; } ns.back ().pair = lexer_->pair_separator (); tt = peek (); continue; } if (!first) break; if (tt == type::rcbrace) // Empty name, e.g., dir{}. { // If we are a second half of a pair, add another first half // unless this is the first instance. // if (pair != 0 && pair != ns.size ()) ns.push_back (ns[pair - 1]); ns.emplace_back (pp, (dp != nullptr ? *dp : dir_path ()), (tp != nullptr ? *tp : string ()), string ()); break; } else // Our caller expected this to be a name. // fail (t) << "expected name instead of " << t; } // Handle the empty RHS in a pair, (e.g., {y=}). // if (!ns.empty () && ns.back ().pair != '\0') { ns.emplace_back (pp, (dp != nullptr ? *dp : dir_path ()), (tp != nullptr ? *tp : string ()), string ()); } } void parser:: skip_line (token& t, type& tt) { for (; tt != type::newline && tt != type::eos; next (t, tt)) ; } void parser:: skip_block (token& t, type& tt) { // Skip until } or eos, keeping track of the {}-balance. // for (size_t b (0); tt != type::eos; ) { if (tt == type::lcbrace || tt == type::rcbrace) { type ptt (peek ()); if (ptt == type::newline || ptt == type::eos) // Block { or }. { if (tt == type::lcbrace) ++b; else { if (b == 0) break; --b; } } } skip_line (t, tt); if (tt != type::eos) next (t, tt); } } bool parser:: keyword (token& t) { assert (t.type == type::name); // The goal here is to allow using keywords as variable names and // target types without imposing ugly restrictions/decorators on // keywords (e.g., '.using' or 'USING'). A name is considered a // potential keyword if: // // - it is not quoted [so a keyword can always be escaped] and // - next token is eos or '(' [so if(...) will work] or // - next token is separated and is not '=' or '+=' [which means a // "directive trailer" can never start with one of them]. // // See tests/keyword. // if (!t.quoted) { // We cannot peek at the whole token here since it might have to be // lexed in a different mode. So peek at its first character. // pair<char, bool> p (lexer_->peek_char ()); char c (p.first); return c == '\0' || c == '(' || (p.second && c != '=' && c != '+'); } return false; } // Buildspec parsing. // // Here is the problem: we "overload" '(' and ')' to mean operation // application rather than the eval context. At the same time we want // to use names() to parse names, get variable expansion/function calls, // quoting, etc. We just need to disable the eval context. The way this // is done has two parts: Firstly, we parse names in chunks and detect // and handle the opening paren. In other words, a buildspec like // 'clean (./)' is "chunked" as 'clean', '(', etc. While this is fairly // straightforward, there is one snag: concatenating eval contexts, as // in 'clean(./)'. Normally, this will be treated as a single chunk and // we don't want that. So here comes the trick (or hack, if you like): // we will make every opening paren token "separated" (i.e., as if it // was proceeded by a space). This will disable concatenating eval. In // fact, we will even go a step further and only do this if we are in // the original pairs mode. This will allow us to still use eval // contexts in buildspec, provided that we quote it: '"cle(an)"'. Note // also that function calls still work as usual: '$filter (clean test)'. // To disable a function call and make it instead a var that is expanded // into operation name(s), we can use quoting: '"$ops"(./)'. // static void paren_processor (token& t, const lexer& l) { if (t.type == type::lparen && l.mode () == lexer_mode::pairs) t.separated = true; } buildspec parser:: parse_buildspec (istream& is, const std::string& name) { path_ = &name; lexer l (is, name, &paren_processor); lexer_ = &l; target_ = nullptr; scope_ = root_ = global_scope; // Turn on pairs recognition with '@' as the pair separator (e.g., // src_root/@out_root/exe{foo bar}). // lexer_->mode (lexer_mode::pairs, '@'); token t (type::eos, false, 0, 0); type tt; next (t, tt); return buildspec_clause (t, tt, type::eos); } static bool opname (const name& n) { // First it has to be a non-empty simple name. // if (n.pair != '\0' || !n.simple () || n.empty ()) return false; // C identifier. // for (size_t i (0); i != n.value.size (); ++i) { char c (n.value[i]); if (c != '_' && !(i != 0 ? isalnum (c) : isalpha (c))) return false; } return true; } buildspec parser:: buildspec_clause (token& t, type& tt, type tt_end) { buildspec bs; while (tt != tt_end) { // We always start with one or more names. Eval context // (lparen) only allowed if quoted. // if (tt != type::name && tt != type::lcbrace && // Untyped name group: '{foo ...' tt != type::dollar && // Variable expansion: '$foo ...' !(tt == type::lparen && lexer_->mode () == lexer_mode::quoted) && tt != type::pair_separator) // Empty pair LHS: '@foo ...' fail (t) << "operation or target expected instead of " << t; const location l (get_location (t, &path_)); // Start of names. // This call will parse the next chunk of output and produce // zero or more names. // names_type ns (names (t, tt, true)); // What these names mean depends on what's next. If it is an // opening paren, then they are operation/meta-operation names. // Otherwise they are targets. // if (tt == type::lparen) // Peeked into by names(). { if (ns.empty ()) fail (t) << "operation name expected before '('"; for (const name& n: ns) if (!opname (n)) fail (l) << "operation name expected instead of '" << n << "'"; // Inside '(' and ')' we have another, nested, buildspec. // next (t, tt); const location l (get_location (t, &path_)); // Start of nested names. buildspec nbs (buildspec_clause (t, tt, type::rparen)); // Merge the nested buildspec into ours. But first determine // if we are an operation or meta-operation and do some sanity // checks. // bool meta (false); for (const metaopspec& nms: nbs) { // We definitely shouldn't have any meta-operations. // if (!nms.name.empty ()) fail (l) << "nested meta-operation " << nms.name; if (!meta) { // If we have any operations in the nested spec, then this // mean that our names are meta-operation names. // for (const opspec& nos: nms) { if (!nos.name.empty ()) { meta = true; break; } } } } // No nested meta-operations means we should have a single // metaopspec object with empty meta-operation name. // assert (nbs.size () == 1); const metaopspec& nmo (nbs.back ()); if (meta) { for (name& n: ns) { bs.push_back (nmo); bs.back ().name = move (n.value); } } else { // Since we are not a meta-operation, the nested buildspec // should be just a bunch of targets. // assert (nmo.size () == 1); const opspec& nos (nmo.back ()); if (bs.empty () || !bs.back ().name.empty ()) bs.push_back (metaopspec ()); // Empty (default) meta operation. for (name& n: ns) { bs.back ().push_back (nos); bs.back ().back ().name = move (n.value); } } next (t, tt); // Done with '('. } else if (!ns.empty ()) { // Group all the targets into a single operation. In other // words, 'foo bar' is equivalent to 'update(foo bar)'. // if (bs.empty () || !bs.back ().name.empty ()) bs.push_back (metaopspec ()); // Empty (default) meta operation. metaopspec& ms (bs.back ()); for (auto i (ns.begin ()), e (ns.end ()); i != e; ++i) { // @@ We may actually want to support this at some point. // if (i->qualified ()) fail (l) << "target name expected instead of " << *i; if (opname (*i)) ms.push_back (opspec (move (i->value))); else { // Do we have the src_base? // dir_path src_base; if (i->pair != '\0') { if (i->typed ()) fail (l) << "expected target src_base instead of " << *i; src_base = move (i->dir); if (!i->value.empty ()) src_base /= dir_path (move (i->value)); ++i; assert (i != e); // Got to have the second half of the pair. } if (ms.empty () || !ms.back ().name.empty ()) ms.push_back (opspec ()); // Empty (default) operation. opspec& os (ms.back ()); os.emplace_back (move (src_base), move (*i)); } } } } return bs; } void parser:: switch_scope (const dir_path& p) { tracer trace ("parser::switch_scope", &path_); // First, enter the scope into the map and see if it is in any // project. If it is not, then there is nothing else to do. // auto i (scopes.insert (p, nullptr, true, false)); scope_ = i->second; scope* rs (scope_->root_scope ()); if (rs == nullptr) return; // Path p can be src_base or out_base. Figure out which one it is. // dir_path out_base (p.sub (rs->out_path ()) ? p : src_out (p, *rs)); // Create and bootstrap root scope(s) of subproject(s) that this // scope may belong to. If any were created, load them. Note that // we need to do this before figuring out src_base since we may // switch the root project (and src_root with it). // { scope* nrs (&create_bootstrap_inner (*rs, out_base)); if (rs != nrs) { load_root_pre (*nrs); // Load outer roots recursively. rs = nrs; } } // Switch to the new root scope. // if (rs != root_) { level5 ([&]{trace << "switching to root scope " << rs->out_path ();}); root_ = rs; } // Now we can figure out src_base and finish setting the scope. // dir_path src_base (src_out (out_base, *rs)); setup_base (i, move (out_base), move (src_base)); } void parser:: process_default_target (token& t) { tracer trace ("parser::process_default_target", &path_); // The logic is as follows: if we have an explicit current directory // target, then that's the default target. Otherwise, we take the // first target and use it as a prerequisite to create an implicit // current directory target, effectively making it the default // target via an alias. If there are no targets in this buildfile, // then we don't do anything. // if (default_target_ == nullptr || // No targets in this buildfile. targets.find (dir::static_type, // Explicit current dir target. scope_->out_path (), "", nullptr, trace) != targets.end ()) return; target& dt (*default_target_); level5 ([&]{trace (t) << "creating current directory alias for " << dt;}); target& ct ( targets.insert ( dir::static_type, scope_->out_path (), "", nullptr, trace).first); prerequisite& p ( scope_->prerequisites.insert ( nullptr, dt.type (), dt.dir, dt.name, dt.ext, *scope_, // Doesn't matter which scope since dir is absolute. trace).first); p.target = &dt; ct.prerequisites.emplace_back (p); } void parser:: enter_buildfile (const path& p) { tracer trace ("parser::enter_buildfile", &path_); const char* e (p.extension ()); targets.insert<buildfile> ( p.directory (), p.leaf ().base ().string (), &extension_pool.find (e == nullptr ? "" : e), // Always specified. trace); } type parser:: next (token& t, type& tt) { if (!peeked_) t = lexer_->next (); else { t = move (peek_); peeked_ = false; } tt = t.type; return tt; } type parser:: peek () { if (!peeked_) { peek_ = lexer_->next (); peeked_ = true; } return peek_.type; } static location get_location (const token& t, const void* data) { assert (data != nullptr); const string& p (**static_cast<const string* const*> (data)); return location (p.c_str (), t.line, t.column); } }