// file : build2/cc/link.cxx -*- C++ -*- // copyright : Copyright (c) 2014-2016 Code Synthesis Ltd // license : MIT; see accompanying LICENSE file #include #include // exit() #include // cerr #include #include #include #include #include #include #include #include #include #include // c #include using namespace std; using namespace butl; namespace build2 { namespace cc { using namespace bin; link:: link (data&& d) : common (move (d)), rule_id (string (x) += ".link 1") { } // Extract system library search paths from GCC or compatible (Clang, // Intel) using the -print-search-dirs option. // void link:: gcc_library_search_paths (scope& bs, dir_paths& r) const { scope& rs (*bs.root_scope ()); cstrings args; string std; // Storage. args.push_back (cast (rs[config_x]).string ().c_str ()); append_options (args, bs, c_coptions); append_options (args, bs, x_coptions); append_std (args, rs, bs, std); append_options (args, bs, c_loptions); append_options (args, bs, x_loptions); args.push_back ("-print-search-dirs"); args.push_back (nullptr); if (verb >= 3) print_process (args); string l; try { process pr (args.data (), 0, -1); // Open pipe to stdout. try { ifdstream is (pr.in_ofd, fdstream_mode::skip, ifdstream::badbit); string s; while (getline (is, s)) { if (s.compare (0, 12, "libraries: =") == 0) { l.assign (s, 12, string::npos); break; } } is.close (); // Don't block. if (!pr.wait ()) throw failed (); } catch (const ifdstream::failure&) { pr.wait (); fail << "error reading " << x_lang << " compiler -print-search-dirs " << "output"; } } catch (const process_error& e) { error << "unable to execute " << args[0] << ": " << e.what (); if (e.child ()) exit (1); throw failed (); } if (l.empty ()) fail << "unable to extract " << x_lang << " compiler system library " << "search paths"; // Now the fun part: figuring out which delimiter is used. Normally it // is ':' but on Windows it is ';' (or can be; who knows for sure). Also // note that these paths are absolute (or should be). So here is what we // are going to do: first look for ';'. If found, then that's the // delimiter. If not found, then there are two cases: it is either a // single Windows path or the delimiter is ':'. To distinguish these two // cases we check if the path starts with a Windows drive. // char d (';'); string::size_type e (l.find (d)); if (e == string::npos && (l.size () < 2 || l[0] == '/' || l[1] != ':')) { d = ':'; e = l.find (d); } // Now chop it up. We already have the position of the first delimiter // (if any). // for (string::size_type b (0);; e = l.find (d, (b = e + 1))) { r.emplace_back (l, b, (e != string::npos ? e - b : e)); r.back ().normalize (); if (e == string::npos) break; } } dir_paths link:: extract_library_paths (scope& bs) const { dir_paths r; // Extract user-supplied search paths (i.e., -L, /LIBPATH). // auto extract = [&r, this] (const value& val) { const auto& v (cast (val)); for (auto i (v.begin ()), e (v.end ()); i != e; ++i) { const string& o (*i); dir_path d; if (cid == "msvc") { // /LIBPATH: (case-insensitive). // if ((o[0] == '/' || o[0] == '-') && (i->compare (1, 8, "LIBPATH:") == 0 || i->compare (1, 8, "libpath:") == 0)) d = dir_path (*i, 9, string::npos); else continue; } else { // -L can either be in the "-L" or "-L " form. // if (*i == "-L") { if (++i == e) break; // Let the compiler complain. d = dir_path (*i); } else if (i->compare (0, 2, "-L") == 0) d = dir_path (*i, 2, string::npos); else continue; } // Ignore relative paths. Or maybe we should warn? // if (!d.relative ()) r.push_back (move (d)); } }; if (auto l = bs[c_loptions]) extract (*l); if (auto l = bs[x_loptions]) extract (*l); if (cid == "msvc") msvc_library_search_paths (bs, r); else gcc_library_search_paths (bs, r); return r; } target* link:: search_library (optional& spc, prerequisite& p) const { tracer trace (x, "link::search_library"); // @@ This is hairy enough to warrant a separate implementation for // Windows. // // First check the cache. // if (p.target != nullptr) return p.target; bool l (p.is_a ()); const string* ext (l ? nullptr : p.ext); // Only for liba/libs. // Then figure out what we need to search for. // // liba // path an; const string* ae (nullptr); if (l || p.is_a ()) { // We are trying to find a library in the search paths extracted from // the compiler. It would only be natural if we used the library // prefix/extension that correspond to this compiler and/or its // target. // // Unlike MinGW, VC's .lib/.dll.lib naming is by no means standard and // we might need to search for other names. In fact, there is no // reliable way to guess from the file name what kind of library it // is, static or import and we will have to do deep inspection of such // alternative names. However, if we did find .dll.lib, then we can // assume that .lib is the static library without any deep inspection // overhead. // const char* e (""); if (cid == "msvc") { an = path (p.name); e = "lib"; } else { an = path ("lib" + p.name); e = "a"; } ae = ext == nullptr ? &extension_pool.find (e) : ext; if (!ae->empty ()) { an += '.'; an += *ae; } } // libs // path sn; const string* se (nullptr); if (l || p.is_a ()) { const char* e (""); if (cid == "msvc") { sn = path (p.name); e = "dll.lib"; } else { sn = path ("lib" + p.name); if (tsys == "darwin") e = "dylib"; else if (tsys == "mingw32") e = "dll.a"; // See search code below. else e = "so"; } se = ext == nullptr ? &extension_pool.find (e) : ext; if (!se->empty ()) { sn += '.'; sn += *se; } } // Now search. // if (!spc) spc = extract_library_paths (p.scope); liba* a (nullptr); libs* s (nullptr); path f; // Reuse the buffer. const dir_path* pd; for (const dir_path& d: *spc) { timestamp mt; // libs // // Look for the shared library first. The order is important for VC: // only if we found .dll.lib can we safely assumy that just .lib is a // static library. // if (!sn.empty ()) { f = d; f /= sn; mt = file_mtime (f); if (mt != timestamp_nonexistent) { // On Windows what we found is the import library which we need // to make the first ad hoc member of libs{}. // if (tclass == "windows") { s = &targets.insert ( d, dir_path (), p.name, nullptr, trace); if (s->member == nullptr) { libi& i ( targets.insert ( d, dir_path (), p.name, se, trace)); if (i.path ().empty ()) i.path (move (f)); i.mtime (mt); // Presumably there is a DLL somewhere, we just don't know // where (and its possible we might have to look for one if we // decide we need to do rpath emulation for installed // libraries as well). We will represent this as empty path // but valid timestamp (aka "trust me, it's there"). // s->mtime (mt); s->member = &i; } } else { s = &targets.insert (d, dir_path (), p.name, se, trace); if (s->path ().empty ()) s->path (move (f)); s->mtime (mt); } } else if (ext == nullptr && tsys == "mingw32") { // Above we searched for the import library (.dll.a) but if it's // not found, then we also search for the .dll (unless the // extension was specified explicitly) since we can link to it // directly. Note also that the resulting libs{} would end up // being the .dll. // se = &extension_pool.find ("dll"); f = f.base (); // Remove .a from .dll.a. mt = file_mtime (f); if (mt != timestamp_nonexistent) { s = &targets.insert (d, dir_path (), p.name, se, trace); if (s->path ().empty ()) s->path (move (f)); s->mtime (mt); } } } // liba // // If we didn't find .dll.lib then we cannot assume .lib is static. // if (!an.empty () && (s != nullptr || cid != "msvc")) { f = d; f /= an; if ((mt = file_mtime (f)) != timestamp_nonexistent) { // Enter the target. Note that because the search paths are // normalized, the result is automatically normalized as well. // // Note that this target is outside any project which we treat // as out trees. // a = &targets.insert (d, dir_path (), p.name, ae, trace); if (a->path ().empty ()) a->path (move (f)); a->mtime (mt); } } // Alternative search for VC. // if (cid == "msvc") { scope& rs (*p.scope.root_scope ()); const path& ld (cast (rs["config.bin.ld"])); if (s == nullptr && !sn.empty ()) s = msvc_search_shared (ld, d, p); if (a == nullptr && !an.empty ()) a = msvc_search_static (ld, d, p); } if (a != nullptr || s != nullptr) { pd = &d; break; } } if (a == nullptr && s == nullptr) return nullptr; // Add the "using static/shared library" macro (used, for example, to // handle DLL export). The absence of either of these macros would mean // some other build system that cannot distinguish between the two. // auto add_macro = [this] (target& t, const char* suffix) { // If there is already a value (either in cc.export or x.export), // don't add anything: we don't want to be accumulating defines nor // messing with custom values. And if we are adding, then use the // generic cc.export. // if (!t.vars[x_export_poptions]) { auto p (t.vars.insert (c_export_poptions)); if (p.second) { // The "standard" macro name will be LIB_{STATIC,SHARED}, // where is the target name. Here we want to strike a // balance between being unique and not too noisy. // string d ("-DLIB"); auto upcase_sanitize = [] (char c) { return (c == '-' || c == '+' || c == '.') ? '_' : ucase (c); }; transform (t.name.begin (), t.name.end (), back_inserter (d), upcase_sanitize); d += '_'; d += suffix; strings o; o.push_back (move (d)); p.first.get () = move (o); } } }; if (a != nullptr) add_macro (*a, "STATIC"); if (s != nullptr) add_macro (*s, "SHARED"); if (l) { // Enter the target group. // lib& l (targets.insert (*pd, dir_path (), p.name, p.ext, trace)); // It should automatically link-up to the members we have found. // assert (l.a == a); assert (l.s == s); // Set the bin.lib variable to indicate what's available. // const char* bl (a != nullptr ? (s != nullptr ? "both" : "static") : "shared"); l.assign ("bin.lib") = bl; p.target = &l; } else p.target = p.is_a () ? static_cast (a) : s; return p.target; } match_result link:: match (action a, target& t, const string& hint) const { tracer trace (x, "link::match"); // @@ TODO: // // - if path already assigned, verify extension? // // @@ Q: // // - if there is no .o, are we going to check if the one derived // from target exist or can be built? A: No. // What if there is a library. Probably ok if static, not if shared, // (i.e., a utility library). // otype lt (link_type (t)); // Scan prerequisites and see if we can work with what we've got. Note // that X could be C. We handle this by always checking for X first. // bool seen_x (false), seen_c (false), seen_obj (false), seen_lib (false); for (prerequisite_member p: group_prerequisite_members (a, t)) { if (p.is_a (x_src)) { seen_x = seen_x || true; } else if (p.is_a ()) { seen_c = seen_c || true; } else if (p.is_a ()) { seen_obj = seen_obj || true; } else if (p.is_a ()) { if (lt != otype::e) fail << "obje{} as prerequisite of " << t; seen_obj = seen_obj || true; } else if (p.is_a ()) { if (lt != otype::a) fail << "obja{} as prerequisite of " << t; seen_obj = seen_obj || true; } else if (p.is_a ()) { if (lt != otype::s) fail << "objs{} as prerequisite of " << t; seen_obj = seen_obj || true; } else if (p.is_a () || p.is_a () || p.is_a ()) { seen_lib = seen_lib || true; } } // We will only chain a C source if there is also an X source or we were // explicitly told to. // if (seen_c && !seen_x && hint < x) { l4 ([&]{trace << "C prerequisite without " << x_lang << " or hint";}); return nullptr; } // If we have any prerequisite libraries (which also means that // we match), search/import and pre-match them to implement the // "library meta-information protocol". Don't do this if we are // called from the install rule just to check if we would match. // if (seen_lib && lt != otype::e && a.operation () != install_id && a.outer_operation () != install_id) { if (t.group != nullptr) t.group->prerequisite_targets.clear (); // lib{}'s optional lib_paths; // Extract lazily. for (prerequisite_member p: group_prerequisite_members (a, t)) { if (p.is_a () || p.is_a () || p.is_a ()) { target* pt (nullptr); // Handle imported libraries. // if (p.proj () != nullptr) pt = search_library (lib_paths, p.prerequisite); if (pt == nullptr) { pt = &p.search (); match_only (a, *pt); } // If the prerequisite came from the lib{} group, then also // add it to lib's prerequisite_targets. // if (!p.prerequisite.belongs (t)) t.group->prerequisite_targets.push_back (pt); t.prerequisite_targets.push_back (pt); } } } return seen_x || seen_c || seen_obj || seen_lib ? &t : nullptr; } recipe link:: apply (action a, target& xt, const match_result&) const { tracer trace (x, "link::apply"); file& t (static_cast (xt)); scope& bs (t.base_scope ()); scope& rs (*bs.root_scope ()); otype lt (link_type (t)); lorder lo (link_order (bs, lt)); // Derive file name from target name. // if (t.path ().empty ()) { const char* p (nullptr); const char* e (nullptr); switch (lt) { case otype::e: { if (tclass == "windows") e = "exe"; else e = ""; break; } case otype::a: { // To be anally precise, let's use the ar id to decide how to name // the library in case, for example, someone wants to archive // VC-compiled object files with MinGW ar or vice versa. // if (cast (rs["bin.ar.id"]) == "msvc") { e = "lib"; } else { p = "lib"; e = "a"; } if (auto l = t["bin.libprefix"]) p = cast (l).c_str (); break; } case otype::s: { if (tclass == "macosx") { p = "lib"; e = "dylib"; } else if (tclass == "windows") { // On Windows libs{} is an ad hoc group. The libs{} itself is // the DLL and we add libi{} import library as its member (see // below). // if (tsys == "mingw32") p = "lib"; e = "dll"; } else { p = "lib"; e = "so"; } if (auto l = t["bin.libprefix"]) p = cast (l).c_str (); break; } } t.derive_path (e, p); } // Add ad hoc group members. // auto add_adhoc = [a, &bs] (target& t, const char* type) -> file& { const target_type& tt (*bs.find_target_type (type)); if (t.member != nullptr) // Might already be there. assert (t.member->type () == tt); else t.member = &search (tt, t.dir, t.out, t.name, nullptr, nullptr); file& r (static_cast (*t.member)); r.recipe (a, group_recipe); return r; }; if (tclass == "windows") { // Import library. // if (lt == otype::s) { file& imp (add_adhoc (t, "libi")); // Usually on Windows the import library is called the same as the // DLL but with the .lib extension. Which means it clashes with the // static library. Instead of decorating the static library name // with ugly suffixes (as is customary), let's use the MinGW // approach (one must admit it's quite elegant) and call it // .dll.lib. // if (imp.path ().empty ()) imp.derive_path (t.path (), tsys == "mingw32" ? "a" : "lib"); } // PDB // if (lt != otype::a && cid == "msvc" && (find_option ("/DEBUG", t, c_loptions, true) || find_option ("/DEBUG", t, x_loptions, true))) { // Add after the import library if any. // file& pdb (add_adhoc (t.member == nullptr ? t : *t.member, "pdb")); // We call it foo.{exe,dll}.pdb rather than just foo.pdb because we // can have both foo.exe and foo.dll in the same directory. // if (pdb.path ().empty ()) pdb.derive_path (t.path (), "pdb"); } } t.prerequisite_targets.clear (); // See lib pre-match in match() above. // Inject dependency on the output directory. // inject_fsdir (a, t); optional lib_paths; // Extract lazily. // Process prerequisites: do rule chaining for C and X source files as // well as search and match. // // When cleaning, ignore prerequisites that are not in the same or a // subdirectory of our project root. // const target_type& ott (lt == otype::e ? obje::static_type : lt == otype::a ? obja::static_type : objs::static_type); for (prerequisite_member p: group_prerequisite_members (a, t)) { target* pt (nullptr); if (!p.is_a (x_src) && !p.is_a ()) { // Handle imported libraries. // if (p.proj () != nullptr) pt = search_library (lib_paths, p.prerequisite); // The rest is the same basic logic as in search_and_match(). // if (pt == nullptr) pt = &p.search (); if (a.operation () == clean_id && !pt->dir.sub (rs.out_path ())) continue; // Skip. // If this is the obj{} or lib{} target group, then pick the // appropriate member and make sure it is searched and matched. // if (obj* o = pt->is_a ()) { switch (lt) { case otype::e: pt = o->e; break; case otype::a: pt = o->a; break; case otype::s: pt = o->s; break; } if (pt == nullptr) pt = &search (ott, p.key ()); } else if (lib* l = pt->is_a ()) { pt = &link_member (*l, lo); } build2::match (a, *pt); t.prerequisite_targets.push_back (pt); continue; } // The rest is rule chaining. // // Which scope shall we use to resolve the root? Unlikely, but // possible, the prerequisite is from a different project // altogether. So we are going to use the target's project. // // @@ Why are we creating the obj{} group if the source came from a // group? // bool group (!p.prerequisite.belongs (t)); // Group's prerequisite. const prerequisite_key& cp (p.key ()); // C-source (X or C) key. const target_type& tt (group ? obj::static_type : ott); // Come up with the obj*{} target. The source prerequisite directory // can be relative (to the scope) or absolute. If it is relative, then // use it as is. If absolute, then translate it to the corresponding // directory under out_root. While the source directory is most likely // under src_root, it is also possible it is under out_root (e.g., // generated source). // dir_path d; { const dir_path& cpd (*cp.tk.dir); if (cpd.relative () || cpd.sub (rs.out_path ())) d = cpd; else { if (!cpd.sub (rs.src_path ())) fail << "out of project prerequisite " << cp << info << "specify corresponding " << tt.name << "{} " << "target explicitly"; d = rs.out_path () / cpd.leaf (rs.src_path ()); } } // obj*{} is always in the out tree. // target& ot ( search (tt, d, dir_path (), *cp.tk.name, nullptr, cp.scope)); // If we are cleaning, check that this target is in the same or // a subdirectory of our project root. // if (a.operation () == clean_id && !ot.dir.sub (rs.out_path ())) { // If we shouldn't clean obj{}, then it is fair to assume we // shouldn't clean the source either (generated source will be in // the same directory as obj{} and if not, well, go find yourself // another build system ;-)). // continue; // Skip. } // If we have created the obj{} target group, pick one of its members; // the rest would be primarily concerned with it. // if (group) { obj& o (static_cast (ot)); switch (lt) { case otype::e: pt = o.e; break; case otype::a: pt = o.a; break; case otype::s: pt = o.s; break; } if (pt == nullptr) pt = &search (ott, o.dir, o.out, o.name, o.ext, nullptr); } else pt = &ot; // If this obj*{} target already exists, then it needs to be // "compatible" with what we are doing here. // // This gets a bit tricky. We need to make sure the source files // are the same which we can only do by comparing the targets to // which they resolve. But we cannot search the ot's prerequisites // -- only the rule that matches can. Note, however, that if all // this works out, then our next step is to match the obj*{} // target. If things don't work out, then we fail, in which case // searching and matching speculatively doesn't really hurt. // bool found (false); for (prerequisite_member p1: reverse_group_prerequisite_members (a, *pt)) { // Most of the time we will have just a single source so fast-path // that case. // if (p1.is_a (x_src)) { if (!found) { build2::match (a, *pt); // Now p1 should be resolved. // Searching our own prerequisite is ok. // if (&p.search () != &p1.search ()) fail << "synthesized target for prerequisite " << cp << " " << "would be incompatible with existing target " << *pt << info << "existing prerequisite " << p1 << " does not match " << cp << info << "specify corresponding " << tt.name << "{} target " << "explicitly"; found = true; } continue; // Check the rest of the prerequisites. } // Ignore some known target types (fsdir, headers, libraries). // if (p1.is_a () || p1.is_a () || p1.is_a () || p1.is_a () || (p.is_a (x_src) && x_header (p1)) || (p.is_a () && p1.is_a ())) continue; fail << "synthesized target for prerequisite " << cp << " would be incompatible with existing target " << *pt << info << "unexpected existing prerequisite type " << p1 << info << "specify corresponding obj{} target explicitly"; } if (!found) { // Note: add the source to the group, not the member. // ot.prerequisites.emplace_back (p.as_prerequisite (trace)); // Add our lib*{} prerequisites to the object file (see the export.* // machinery for details). // // Note that we don't resolve lib{} to liba{}/libs{} here instead // leaving it to whoever (e.g., the compile rule) will be needing // *.export.*. One reason for doing it there is that the object // target might be specified explicitly by the user in which case // they will have to specify the set of lib{} prerequisites and it's // much cleaner to do as lib{} rather than liba{}/libs{}. // // Initially, we were only adding imported libraries, but there is a // problem with this approach: the non-imported library might depend // on the imported one(s) which we will never "see" unless we start // with this library. // for (prerequisite& p: group_prerequisites (t)) { if (p.is_a () || p.is_a () || p.is_a ()) ot.prerequisites.emplace_back (p); } build2::match (a, *pt); } t.prerequisite_targets.push_back (pt); } switch (a) { case perform_update_id: return [this] (action a, target& t) {return perform_update (a, t);}; case perform_clean_id: return [this] (action a, target& t) {return perform_clean (a, t);}; default: return noop_recipe; // Configure update. } } // Recursively append/hash prerequisite libraries of a static library. // static void append_libraries (strings& args, liba& a) { for (target* pt: a.prerequisite_targets) { if (liba* pa = pt->is_a ()) { args.push_back (relative (pa->path ()).string ()); // string()&& append_libraries (args, *pa); } else if (libs* ps = pt->is_a ()) args.push_back (relative (ps->path ()).string ()); // string()&& } } static void hash_libraries (sha256& cs, liba& a) { for (target* pt: a.prerequisite_targets) { if (liba* pa = pt->is_a ()) { cs.append (pa->path ().string ()); hash_libraries (cs, *pa); } else if (libs* ps = pt->is_a ()) cs.append (ps->path ().string ()); } } static void append_rpath_link (strings& args, libs& t) { for (target* pt: t.prerequisite_targets) { if (libs* ls = pt->is_a ()) { args.push_back ("-Wl,-rpath-link," + ls->path ().directory ().string ()); append_rpath_link (args, *ls); } } } // See windows-rpath.cxx. // timestamp windows_rpath_timestamp (file&); void windows_rpath_assembly (file&, const string& cpu, timestamp, bool scratch); // Filter link.exe noise (msvc.cxx). // void msvc_filter_link (ifdstream&, const file&, otype); // Translate target CPU to /MACHINE option. // const char* msvc_machine (const string& cpu); // msvc.cxx target_state link:: perform_update (action a, target& xt) const { tracer trace (x, "link::perform_update"); file& t (static_cast (xt)); scope& rs (t.root_scope ()); otype lt (link_type (t)); // Update prerequisites. // bool update (execute_prerequisites (a, t, t.mtime ())); // If targeting Windows, take care of the manifest. // path manifest; // Manifest itself (msvc) or compiled object file. timestamp rpath_timestamp (timestamp_nonexistent); // DLLs timestamp. if (lt == otype::e && tclass == "windows") { // First determine if we need to add our rpath emulating assembly. The // assembly itself is generated later, after updating the target. Omit // it if we are updating for install. // if (a.outer_operation () != install_id) rpath_timestamp = windows_rpath_timestamp (t); path mf ( windows_manifest ( t, rpath_timestamp != timestamp_nonexistent)); timestamp mt (file_mtime (mf)); if (tsys == "mingw32") { // Compile the manifest into the object file with windres. While we // are going to synthesize an .rc file to pipe to windres' stdin, we // will still use .manifest to check if everything is up-to-date. // manifest = mf + ".o"; if (mt > file_mtime (manifest)) { path of (relative (manifest)); // @@ Would be good to add this to depdb (e.g,, rc changes). // const char* args[] = { cast (rs["config.bin.rc"]).string ().c_str (), "--input-format=rc", "--output-format=coff", "-o", of.string ().c_str (), nullptr}; if (verb >= 3) print_process (args); try { process pr (args, -1); try { ofdstream os (pr.out_fd); // 1 is resource ID, 24 is RT_MANIFEST. We also need to escape // Windows path backslashes. // os << "1 24 \""; const string& s (mf.string ()); for (size_t i (0), j;; i = j + 1) { j = s.find ('\\', i); os.write (s.c_str () + i, (j == string::npos ? s.size () : j) - i); if (j == string::npos) break; os.write ("\\\\", 2); } os << "\"" << endl; os.close (); if (!pr.wait ()) throw failed (); // Assume diagnostics issued. } catch (const ofdstream::failure& e) { if (pr.wait ()) // Ignore if child failed. fail << "unable to pipe resource file to " << args[0] << ": " << e.what (); } } catch (const process_error& e) { error << "unable to execute " << args[0] << ": " << e.what (); if (e.child ()) exit (1); throw failed (); } update = true; // Manifest changed, force update. } } else { manifest = move (mf); // Save for link.exe's /MANIFESTINPUT. if (mt > t.mtime ()) update = true; // Manifest changed, force update. } } // Check/update the dependency database. // depdb dd (t.path () + ".d"); // First should come the rule name/version. // if (dd.expect (rule_id) != nullptr) l4 ([&]{trace << "rule mismatch forcing update of " << t;}); lookup ranlib; // Then the linker checksum (ar/ranlib or the compiler). // if (lt == otype::a) { ranlib = rs["config.bin.ranlib"]; if (ranlib && ranlib->empty ()) // @@ BC LT [null]. ranlib = lookup (); const char* rl ( ranlib ? cast (rs["bin.ranlib.checksum"]).c_str () : "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"); if (dd.expect (cast (rs["bin.ar.checksum"])) != nullptr) l4 ([&]{trace << "ar mismatch forcing update of " << t;}); if (dd.expect (rl) != nullptr) l4 ([&]{trace << "ranlib mismatch forcing update of " << t;}); } else { // For VC we use link.exe directly. // const string& cs ( cast ( rs[cid == "msvc" ? var_pool["bin.ld.checksum"] : x_checksum])); if (dd.expect (cs) != nullptr) l4 ([&]{trace << "linker mismatch forcing update of " << t;}); } // Next check the target. While it might be incorporated into the linker // checksum, it also might not (e.g., VC link.exe). // if (dd.expect (ctg) != nullptr) l4 ([&]{trace << "target mismatch forcing update of " << t;}); // Start building the command line. While we don't yet know whether we // will really need it, we need to hash it to find out. So the options // are to either replicate the exact process twice, first for hashing // then for building or to go ahead and start building and hash the // result. The first approach is probably more efficient while the // second is simpler. Let's got with the simpler for now (actually it's // kind of a hybrid). // cstrings args {nullptr}; // Reserve one for config.bin.ar/config.x. // Storage. // string std; string soname1, soname2; strings sargs; if (lt == otype::a) { if (cid == "msvc") ; else { // If the user asked for ranlib, don't try to do its function with // -s. Some ar implementations (e.g., the LLVM one) don't support // leading '-'. // args.push_back (ranlib ? "rc" : "rcs"); } } else { if (cid == "msvc") { // We are using link.exe directly so don't pass the compiler // options. } else { append_options (args, t, c_coptions); append_options (args, t, x_coptions); append_std (args, rs, t, std); } append_options (args, t, c_loptions); append_options (args, t, x_loptions); // Handle soname/rpath. // if (tclass == "windows") { // Limited emulation for Windows with no support for user-defined // rpaths. // auto l (t["bin.rpath"]); if (l && !l->empty ()) fail << ctg << " does not support rpath"; } else { // Set soname. // if (lt == otype::s) { const string& leaf (t.path ().leaf ().string ()); if (tclass == "macosx") { // With Mac OS 10.5 (Leopard) Apple finally caved in and gave us // a way to emulate vanilla -rpath. // // It may seem natural to do something different on update for // install. However, if we don't make it @rpath, then the user // won't be able to use config.bin.rpath for installed libraries. // soname1 = "-install_name"; soname2 = "@rpath/" + leaf; } else soname1 = "-Wl,-soname," + leaf; if (!soname1.empty ()) args.push_back (soname1.c_str ()); if (!soname2.empty ()) args.push_back (soname2.c_str ()); } // Add rpaths. We used to first add the ones specified by the user // so that they take precedence. But that caused problems if we have // old versions of the libraries sitting in the rpath location // (e.g., installed libraries). And if you think about this, it's // probably correct to prefer libraries that we explicitly imported // to the ones found via rpath. // // Note also that if this is update for install, then we don't add // rpath of the imported libraries (i.e., we assume they are also // installed). // for (target* pt: t.prerequisite_targets) { if (libs* ls = pt->is_a ()) { if (a.outer_operation () != install_id) { sargs.push_back ("-Wl,-rpath," + ls->path ().directory ().string ()); } // Use -rpath-link on targets that support it (Linux, FreeBSD). // Since with this option the paths are not stored in the // library, we have to do this recursively (in fact, we don't // really need it for top-level libraries). // else if (tclass == "linux" || tclass == "freebsd") append_rpath_link (sargs, *ls); } } if (auto l = t["bin.rpath"]) for (const dir_path& p: cast (l)) sargs.push_back ("-Wl,-rpath," + p.string ()); } } // All the options should now be in. Hash them and compare with the db. // { sha256 cs; for (size_t i (1); i != args.size (); ++i) cs.append (args[i]); for (size_t i (0); i != sargs.size (); ++i) cs.append (sargs[i]); if (dd.expect (cs.string ()) != nullptr) l4 ([&]{trace << "options mismatch forcing update of " << t;}); } // Finally, hash and compare the list of input files. // // Should we capture actual files or their checksum? The only good // reason for capturing actual files is diagnostics: we will be able // to pinpoint exactly what is causing the update. On the other hand, // the checksum is faster and simpler. And we like simple. // { sha256 cs; for (target* pt: t.prerequisite_targets) { file* f; liba* a (nullptr); libs* s (nullptr); if ((f = pt->is_a ()) || (f = pt->is_a ()) || (f = pt->is_a ()) || (lt != otype::a && ((f = a = pt->is_a ()) || (f = s = pt->is_a ())))) { // On Windows a shared library is a DLL with the import library as // a first ad hoc group member. MinGW though can link directly to // DLLs (see search_library() for details). // if (s != nullptr && tclass == "windows") { if (s->member != nullptr) f = static_cast (s->member); } cs.append (f->path ().string ()); // If this is a static library, link all the libraries it depends // on, recursively. // if (a != nullptr) hash_libraries (cs, *a); } } // Treat it as input for both MinGW and VC. // if (!manifest.empty ()) cs.append (manifest.string ()); // Treat them as inputs, not options. // if (lt != otype::a) { hash_options (cs, t, c_libs); hash_options (cs, t, x_libs); } if (dd.expect (cs.string ()) != nullptr) l4 ([&]{trace << "file set mismatch forcing update of " << t;}); } // If any of the above checks resulted in a mismatch (different linker, // options or input file set), or if the database is newer than the // target (interrupted update) then force the target update. Also note // this situation in the "from scratch" flag. // bool scratch (false); if (dd.writing () || dd.mtime () > t.mtime ()) scratch = update = true; dd.close (); // If nothing changed, then we are done. // if (!update) return target_state::unchanged; // Ok, so we are updating. Finish building the command line. // string out, out1, out2; // Storage. // Translate paths to relative (to working directory) ones. This results // in easier to read diagnostics. // path relt (relative (t.path ())); switch (lt) { case otype::a: { args[0] = cast (rs["config.bin.ar"]).string ().c_str (); if (cid == "msvc") { // lib.exe has /LIBPATH but it's not clear/documented what it's // used for. Perhaps for link-time code generation (/LTCG)? If // that's the case, then we may need to pass *.loptions. // args.push_back ("/NOLOGO"); // Add /MACHINE. // args.push_back (msvc_machine (cast (rs[x_target_cpu]))); out = "/OUT:" + relt.string (); args.push_back (out.c_str ()); } else args.push_back (relt.string ().c_str ()); break; } // The options are usually similar enough to handle them together. // case otype::e: case otype::s: { if (cid == "msvc") { // Using link.exe directly. // args[0] = cast (rs["config.bin.ld"]).string ().c_str (); args.push_back ("/NOLOGO"); if (lt == otype::s) args.push_back ("/DLL"); // Add /MACHINE. // args.push_back (msvc_machine (cast (rs[x_target_cpu]))); // Unless explicitly enabled with /INCREMENTAL, disable // incremental linking (it is implicitly enabled if /DEBUG is // specified). The reason is the .ilk file: its name cannot be // changed and if we have, say, foo.exe and foo.dll, then they // will end up stomping on each other's .ilk's. // // So the idea is to disable it by default but let the user // request it explicitly if they are sure their project doesn't // suffer from the above issue. We can also have something like // 'incremental' config initializer keyword for this. // // It might also be a good idea to ask Microsoft to add an option. // if (!find_option ("/INCREMENTAL", args, true)) args.push_back ("/INCREMENTAL:NO"); // If you look at the list of libraries Visual Studio links by // default, it includes everything and a couple of kitchen sinks // (winspool32.lib, ole32.lib, odbc32.lib, etc) while we want to // keep our low-level build as pure as possible. However, there // seem to be fairly essential libraries that are not linked by // link.exe by default (use /VERBOSE:LIB to see the list). For // example, MinGW by default links advapi32, shell32, user32, and // kernel32. And so we follow suit and make sure those are linked. // advapi32 and kernel32 are already on the default list and we // only need to add the other two. // // The way we are going to do it is via the /DEFAULTLIB option // rather than specifying the libraries as normal inputs (as VS // does). This way the user can override our actions with the // /NODEFAULTLIB option. // args.push_back ("/DEFAULTLIB:shell32.lib"); args.push_back ("/DEFAULTLIB:user32.lib"); // Take care of the manifest (will be empty for the DLL). // if (!manifest.empty ()) { std = "/MANIFESTINPUT:"; // Repurpose storage for std. std += relative (manifest).string (); args.push_back ("/MANIFEST:EMBED"); args.push_back (std.c_str ()); } if (lt == otype::s) { // On Windows libs{} is the DLL and its first ad hoc group // member is the import library. // // This will also create the .exp export file. Its name will be // derived from the import library by changing the extension. // Lucky for us -- there is no option to name it. // auto imp (static_cast (t.member)); out2 = "/IMPLIB:" + relative (imp->path ()).string (); args.push_back (out2.c_str ()); } // If we have /DEBUG then name the .pdb file. It is either the // first (exe) or the second (dll) ad hoc group member. // if (find_option ("/DEBUG", args, true)) { auto pdb (static_cast ( lt == otype::e ? t.member : t.member->member)); out1 = "/PDB:" + relative (pdb->path ()).string (); args.push_back (out1.c_str ()); } // @@ An executable can have an import library and VS seems to // always name it. I wonder what would trigger its generation? // Could it be the presence of export symbols? Yes, link.exe // will generate the import library iff there are exported // symbols. Which means there could be a DLL without an import // library (which we currently don't handle very well). // out = "/OUT:" + relt.string (); args.push_back (out.c_str ()); } else { args[0] = cast (rs[config_x]).string ().c_str (); // Add the option that triggers building a shared library and take // care of any extras (e.g., import library). // if (lt == otype::s) { if (tclass == "macosx") args.push_back ("-dynamiclib"); else args.push_back ("-shared"); if (tsys == "mingw32") { // On Windows libs{} is the DLL and its first ad hoc group // member is the import library. // auto imp (static_cast (t.member)); out = "-Wl,--out-implib=" + relative (imp->path ()).string (); args.push_back (out.c_str ()); } } args.push_back ("-o"); args.push_back (relt.string ().c_str ()); } break; } } for (target* pt: t.prerequisite_targets) { file* f; liba* a (nullptr); libs* s (nullptr); if ((f = pt->is_a ()) || (f = pt->is_a ()) || (f = pt->is_a ()) || (lt != otype::a && ((f = a = pt->is_a ()) || (f = s = pt->is_a ())))) { // On Windows a shared library is a DLL with the import library as a // first ad hoc group member. MinGW though can link directly to DLLs // (see search_library() for details). // if (s != nullptr && tclass == "windows") { if (s->member != nullptr) f = static_cast (s->member); } sargs.push_back (relative (f->path ()).string ()); // string()&& // If this is a static library, link all the libraries it depends // on, recursively. // if (a != nullptr) append_libraries (sargs, *a); } } // For MinGW manifest is an object file. // if (!manifest.empty () && tsys == "mingw32") sargs.push_back (relative (manifest).string ()); // Copy sargs to args. Why not do it as we go along pushing into sargs? // Because of potential reallocations. // for (size_t i (0); i != sargs.size (); ++i) args.push_back (sargs[i].c_str ()); if (lt != otype::a) { append_options (args, t, c_libs); append_options (args, t, x_libs); } args.push_back (nullptr); if (verb >= 2) print_process (args); else if (verb) text << "ld " << t; try { // VC tools (both lib.exe and link.exe) send diagnostics to stdout. // Also, link.exe likes to print various gratuitous messages. So for // link.exe we redirect stdout to a pipe, filter that noise out, and // send the rest to stderr. // // For lib.exe (and any other insane compiler that may try to pull off // something like this) we are going to redirect stdout to stderr. For // sane compilers this should be harmless. // bool filter (cid == "msvc" && lt != otype::a); process pr (args.data (), 0, (filter ? -1 : 2)); if (filter) { try { ifdstream is (pr.in_ofd, fdstream_mode::text, ifdstream::badbit); msvc_filter_link (is, t, lt); // If anything remains in the stream, send it all to stderr. Note // that the eof check is important: if the stream is at eof, this // and all subsequent writes to cerr will fail (and you won't see // a thing). // if (is.peek () != ifdstream::traits_type::eof ()) cerr << is.rdbuf (); is.close (); } catch (const ifdstream::failure&) {} // Assume exits with error. } if (!pr.wait ()) throw failed (); } catch (const process_error& e) { error << "unable to execute " << args[0] << ": " << e.what (); // In a multi-threaded program that fork()'ed but did not exec(), // it is unwise to try to do any kind of cleanup (like unwinding // the stack and running destructors). // if (e.child ()) exit (1); throw failed (); } // Remove the target file if any of the subsequent actions fail. If we // don't do that, we will end up with a broken build that is up-to-date. // auto_rmfile rm (t.path ()); if (ranlib) { const char* args[] = { cast (ranlib).string ().c_str (), relt.string ().c_str (), nullptr}; if (verb >= 2) print_process (args); try { process pr (args); if (!pr.wait ()) throw failed (); } catch (const process_error& e) { error << "unable to execute " << args[0] << ": " << e.what (); if (e.child ()) exit (1); throw failed (); } } // For Windows generate rpath-emulating assembly (unless updaing for // install). // if (lt == otype::e && tclass == "windows") { if (a.outer_operation () != install_id) windows_rpath_assembly (t, cast (rs[x_target_cpu]), rpath_timestamp, scratch); } rm.cancel (); // Should we go to the filesystem and get the new mtime? We know the // file has been modified, so instead just use the current clock time. // It has the advantage of having the subseconds precision. // t.mtime (system_clock::now ()); return target_state::changed; } target_state link:: perform_clean (action a, target& xt) const { file& t (static_cast (xt)); initializer_list e; switch (link_type (t)) { case otype::a: { e = {".d"}; break; } case otype::e: { if (tclass == "windows") { if (tsys == "mingw32") { e = {".d", "/.dlls", ".manifest.o", ".manifest"}; } else { // Assuming it's VC or alike. Clean up .ilk in case the user // enabled incremental linking (note that .ilk replaces .exe). // e = {".d", "/.dlls", ".manifest", "-.ilk"}; } } else e = {".d"}; break; } case otype::s: { if (tclass == "windows" && tsys != "mingw32") { // Assuming it's VC or alike. Clean up .exp and .ilk. // e = {".d", ".exp", "-.ilk"}; } else e = {".d"}; break; } } return clean_extra (a, t, e); } } }