// file : build2/context -*- C++ -*- // copyright : Copyright (c) 2014-2017 Code Synthesis Ltd // license : MIT; see accompanying LICENSE file #ifndef BUILD2_CONTEXT #define BUILD2_CONTEXT #include #include #include #include #include #include namespace build2 { // Main (and only) scheduler. Started up and shut down in main(). // extern scheduler sched; // In order to perform each operation the build system goes through the // following phases: // // load - load the buildfiles // match - search prerequisites and match rules // execute - execute the matched rule // // The build system starts with a "serial load" phase and then continues // with parallel search and execute. Match, however, can be interrupted // both with load and execute. // // Match can be interrupted with "exclusive load" in order to load // additional buildfiles. Similarly, it can be interrupted with (parallel) // execute in order to build targetd required to complete the match (for // example, generated source code or source code generators themselves. // // Such interruptions are performed by phase change that is protected by // phase_mutex (which is also used to synchronize the state changes between // phases). // // Serial load can perform arbitrary changes to the model. Exclusive load, // however, can only perform "island appends". That is, it can create new // "nodes" (variables, scopes, etc) but not change already existing nodes or // invalidate any references to such (the idea here is that one should be // able to load additional buildfiles as long as they don't interfere with // the existing build state). The "islands" are identified by the // load_generation number (0 for initial/serial load). It is incremented in // case of a phase switch and is stored in various "nodes" (variables, etc) // to allow modifications "within the islands". // extern run_phase phase; extern size_t load_generation; // A "tri-mutex" that keeps all the threads in one of the three phases. When // a thread wants to switch a phase, it has to wait for all the other // threads to do the same (or release their phase locks). The load phase is // exclusive. // // The interleaving match and execute is interesting: during match we read // the "external state" (e.g., filesystem entries, modifications times, etc) // and capture it in the "internal state" (our dependency graph). During // execute we are modifying the external state with controlled modifications // of the internal state to reflect the changes (e.g., update mtimes). If // you think about it, it's pretty clear that we cannot safely perform both // of these actions simultaneously. A good example would be running a code // generator and header dependency extraction simultaneously: the extraction // process may pick up headers as they are being generated. As a result, we // either have everyone treat the external state as read-only or write-only. // class phase_mutex { public: // Acquire a phase lock potentially blocking (unless already in the // desired phase) until switching to the desired phase is possible. // void lock (run_phase); // Release the phase lock potentially allowing (unless there are other // locks on this phase) switching to a different phase. // void unlock (run_phase); // Switch from one phase to another. Semantically, just unlock() followed // by lock() but more efficient. // void relock (run_phase unlock, run_phase lock); private: friend struct phase_lock; friend struct phase_unlock; friend struct phase_switch; phase_mutex (): lc_ (0), mc_ (0), ec_ (0) {phase = run_phase::load;} static phase_mutex instance; private: // We have a counter for each phase which represents the number of threads // in or waiting for this phase. // // We use condition variables to wait for a phase switch. The load phase // is exclusive so we have a separate mutex to serialize it (think of it // as a second level locking). // // When the mutex is unlocked (all three counters become zero, the phase // is always changed to load (this is also the initial state). // mutex m_; size_t lc_; size_t mc_; size_t ec_; condition_variable lv_; condition_variable mv_; condition_variable ev_; mutex lm_; }; // Grab a new phase lock releasing it on destruction. The lock can be // "owning" or "referencing" (recursive). // // On the referencing semantics: If there is already an instance of // phase_lock in this thread, then the new instance simply references it. // // The reason for this semantics is to support the following scheduling // pattern (in actual code we use wait_guard to RAII it): // // atomic_count task_count (0); // // { // phase_lock l (run_phase::match); // (1) // // for (...) // { // sched.async (task_count, // [] (...) // { // phase_lock pl (run_phase::match); // (2) // ... // }, // ...); // } // } // // sched.wait (task_count); // (3) // // Here is what's going on here: // // 1. We first get a phase lock "for ourselves" since after the first // iteration of the loop, things may become asynchronous (including // attempts to switch the phase and modify the structure we are iteration // upon). // // 2. The task can be queued or it can be executed synchronously inside // async() (refer to the scheduler class for details on this semantics). // // If this is an async()-synchronous execution, then the task will create // a referencing phase_lock. If, however, this is a queued execution // (including wait()-synchronous), then the task will create a top-level // phase_lock. // // Note that we only acquire the lock once the task starts executing // (there is no reason to hold the lock while the task is sitting in the // queue). This optimization assumes that whatever else we pass to the // task (for example, a reference to a target) is stable (in other words, // such a reference cannot become invalid). // // 3. Before calling wait(), we release our phase lock to allow switching // the phase. // struct phase_lock { explicit phase_lock (run_phase); ~phase_lock (); phase_lock (phase_lock&&) = delete; phase_lock (const phase_lock&) = delete; phase_lock& operator= (phase_lock&&) = delete; phase_lock& operator= (const phase_lock&) = delete; run_phase p; static #ifdef __cpp_thread_local thread_local #else __thread #endif phase_lock* instance; }; // Assuming we have a lock on the current phase, temporarily release it // and reacquire on destruction. // struct phase_unlock { phase_unlock (bool unlock = true); ~phase_unlock (); phase_lock* l; }; // Assuming we have a lock on the current phase, temporarily switch to a // new phase and switch back on destruction. // struct phase_switch { explicit phase_switch (run_phase); ~phase_switch (); run_phase o, n; }; // Wait for a task count optionally and temporarily unlocking the phase. // struct wait_guard { ~wait_guard () noexcept (false); explicit wait_guard (atomic_count& task_count, bool phase = false); wait_guard (size_t start_count, atomic_count& task_count, bool phase = false); void wait (); size_t start_count; atomic_count* task_count; bool phase; }; // Cached variables. // extern const variable* var_src_root; extern const variable* var_out_root; extern const variable* var_src_base; extern const variable* var_out_base; extern const variable* var_project; extern const variable* var_amalgamation; extern const variable* var_subprojects; extern const variable* var_import_target; // import.target // Current action (meta/operation). // // The names unlike info are available during boot but may not yet be // lifted. The name is always for an outer operation (or meta operation // that hasn't been recognized as such yet). // extern const string* current_mname; extern const string* current_oname; extern const meta_operation_info* current_mif; extern const operation_info* current_inner_oif; extern const operation_info* current_outer_oif; extern size_t current_on; // Current operation number (1-based) in the // meta-operation batch. extern execution_mode current_mode; // Total number of dependency relationships in the current action. Together // with the target::dependents count it is incremented during the rule // search & match phase and is decremented during execution with the // expectation of it reaching 0. Used as a sanity check. // extern atomic_count dependency_count; inline void set_current_mif (const meta_operation_info& mif) { current_mname = &mif.name; current_mif = &mif; current_on = 0; // Reset. } inline void set_current_oif (const operation_info& inner_oif, const operation_info* outer_oif = nullptr) { current_oname = &(outer_oif == nullptr ? inner_oif : *outer_oif).name; current_inner_oif = &inner_oif; current_outer_oif = outer_oif; current_on++; current_mode = inner_oif.mode; dependency_count.store (0, memory_order_relaxed); // Serial. } // Keep going flag. // // Note that setting it to false is not of much help unless we are running // serially. In parallel we queue most of the things up before we see any // failures. // extern bool keep_going; // Reset the build state. In particular, this removes all the targets, // scopes, and variables. // variable_overrides reset (const strings& cmd_vars); // Return the project name or empty string if unnamed. // inline const string& project (const scope& root) { auto l (root[var_project]); return l ? cast (l) : empty_string; } // Return the src/out directory corresponding to the given out/src. The // passed directory should be a sub-directory of out/src_root. // dir_path src_out (const dir_path& out, const scope& root); dir_path src_out (const dir_path& out, const dir_path& out_root, const dir_path& src_root); dir_path out_src (const dir_path& src, const scope& root); dir_path out_src (const dir_path& src, const dir_path& out_root, const dir_path& src_root); // Action phrases, e.g., "configure update exe{foo}", "updating exe{foo}", // and "updating exe{foo} is configured". Use like this: // // info << "while " << diag_doing (a, t); // class target; struct diag_phrase { const action& a; const target& t; void (*f) (ostream&, const action&, const target&); }; inline ostream& operator<< (ostream& os, const diag_phrase& p) { p.f (os, p.a, p.t); return os; } void diag_do (ostream&, const action&, const target&); inline diag_phrase diag_do (const action& a, const target& t) { return diag_phrase {a, t, &diag_do}; } void diag_doing (ostream&, const action&, const target&); inline diag_phrase diag_doing (const action& a, const target& t) { return diag_phrase {a, t, &diag_doing}; } void diag_did (ostream&, const action&, const target&); inline diag_phrase diag_did (const action& a, const target& t) { return diag_phrase {a, t, &diag_did}; } void diag_done (ostream&, const action&, const target&); inline diag_phrase diag_done (const action& a, const target& t) { return diag_phrase {a, t, &diag_done}; } } #include #endif // BUILD2_CONTEXT