// file : libbuild2/functions-name.cxx -*- C++ -*- // license : MIT; see accompanying LICENSE file #include #include #include #include #include using namespace std; namespace build2 { extern bool functions_sort_flags (optional); // functions-builtin.cxx // Convert name to target'ish name (see below for the 'ish part). Return // raw/unprocessed data in case this is an unknown target type (or called // out of scope). See scope::find_target_type() for details. Allow out- // qualified names (out is discarded). // static pair> to_target_type (const scope* s, name& n, const name& o = name ()) { if (n.pair && !o.directory ()) fail << "name pair in names"; return s != nullptr ? s->find_target_type (n, location ()) : pair> {nullptr, nullopt}; } static pair> to_target_name (const scope* s, name&& n, const name& o = name ()) { auto rp (to_target_type (s, n, o)); if (rp.first != nullptr) n.type = rp.first->name; return make_pair (move (n), move (rp.second)); } const target& to_target (const scope& s, name&& n, name&& o) { if (const target* r = search_existing (n, s, o.dir)) return *r; fail << "target " << (n.pair ? names {move (n), move (o)} : names {move (n)}) << " not found" << endf; } const target& to_target (const scope& s, names&& ns) { assert (ns.size () == (ns[0].pair ? 2 : 1)); name o; return to_target (s, move (ns[0]), move (ns[0].pair ? ns[1] : o)); } static bool is_a (const scope* s, name&& n, const name& o, names&& t) { if (s == nullptr) fail << "name.is_a() called out of scope"; string tts (convert (move (t))); const target_type* tt (s->find_target_type (tts)); if (tt == nullptr) fail << "unknown target type " << tts; const target_type* ntt (to_target_type (s, n, o).first); if (ntt == nullptr) fail << "unknown target type " << n.type << " in " << n; return ntt->is_a (*tt); } static names filter (const scope* s, names ns, names ts, bool out) { if (s == nullptr) fail << "name." << (out ? "filter_out" : "filter") << "() called out of scope"; small_vector tts; for (const name& n: ts) { if (!n.simple ()) fail << "invalid target type name " << n; if (n.pair) fail << "pair in target type name " << n; const target_type* tt (s->find_target_type (n.value)); if (tt == nullptr) fail << "unknown target type " << n.value; tts.push_back (tt); } names r; for (auto i (ns.begin ()); i != ns.end (); ++i) { name& n (*i); bool p (n.pair); const target_type* ntt (to_target_type (s, n, p ? *++i : name ()).first); if (ntt == nullptr) fail << "unknown target type " << n.type << " in " << n; if ((find_if (tts.begin (), tts.end (), [ntt] (const target_type* tt) { return ntt->is_a (*tt); }) != tts.end ()) != out) { r.push_back (move (n)); if (p) r.push_back (move (*i)); } } return r; } void name_functions (function_map& m) { // These functions treat a name as a target/prerequisite name. // // While on one hand it feels like calling them target.name(), etc., would // have been more appropriate, on the other hand they can also be called // on prerequisite names. They also won't always return the same result as // if we were interrogating an actual target (e.g., the directory may be // relative). Plus we now have functions that can only be called on // targets (see below). // function_family fn (m, "name"); // Note that we must handle NULL values (relied upon by the parser // to provide conversion semantics consistent with untyped values). // fn["string"] += [](name* n) { return n != nullptr ? to_string (move (*n)) : string (); }; fn["name"] += [](const scope* s, name n) { return to_target_name (s, move (n)).first.value; }; fn["name"] += [](const scope* s, names ns) { small_vector r; for (auto i (ns.begin ()); i != ns.end (); ++i) { name& n (*i); r.push_back ( to_target_name (s, move (n), n.pair ? *++i : name ()).first.value); } if (r.size () == 1) return value (move (r[0])); return value (strings (make_move_iterator (r.begin ()), make_move_iterator (r.end ()))); }; // Note: returns NULL if extension is unspecified (default) and empty if // specified as no extension. // fn["extension"] += [](const scope* s, name n) { return to_target_name (s, move (n)).second; }; fn["extension"] += [](const scope* s, names ns) { // Note: can't do multiple due to NULL semantics. // auto i (ns.begin ()); name& n (*i); const name& o (n.pair ? *++i : name ()); if (++i != ns.end ()) fail << "invalid name value: multiple names"; // Like in convert(). return to_target_name (s, move (n), o).second; }; fn["directory"] += [](const scope* s, name n) { return to_target_name (s, move (n)).first.dir; }; fn["directory"] += [](const scope* s, names ns) { small_vector r; for (auto i (ns.begin ()); i != ns.end (); ++i) { name& n (*i); r.push_back ( to_target_name (s, move (n), n.pair ? *++i : name ()).first.dir); } if (r.size () == 1) return value (move (r[0])); return value (dir_paths (make_move_iterator (r.begin ()), make_move_iterator (r.end ()))); }; fn["target_type"] += [](const scope* s, name n) { return to_target_name (s, move (n)).first.type; }; fn["target_type"] += [](const scope* s, names ns) { small_vector r; for (auto i (ns.begin ()); i != ns.end (); ++i) { name& n (*i); r.push_back ( to_target_name (s, move (n), n.pair ? *++i : name ()).first.type); } if (r.size () == 1) return value (move (r[0])); return value (strings (make_move_iterator (r.begin ()), make_move_iterator (r.end ()))); }; // Note: returns NULL if no project specified. // fn["project"] += [](const scope* s, name n) { return to_target_name (s, move (n)).first.proj; }; fn["project"] += [](const scope* s, names ns) { // Note: can't do multiple due to NULL semantics. // auto i (ns.begin ()); name& n (*i); const name& o (n.pair ? *++i : name ()); if (++i != ns.end ()) fail << "invalid name value: multiple names"; // Like in convert(). return to_target_name (s, move (n), o).first.proj; }; // $is_a(, ) // // Return true if the 's target type is-a . Note that // this is a dynamic type check that takes into account target type // inheritance. // fn["is_a"] += [](const scope* s, name n, names t) { return is_a (s, move (n), name (), move (t)); }; fn["is_a"] += [](const scope* s, names ns, names t) { auto i (ns.begin ()); name& n (*i); const name& o (n.pair ? *++i : name ()); if (++i != ns.end ()) fail << "invalid name value: multiple names"; // Like in convert(). return is_a (s, move (n), o, move (t)); }; // $filter(, ) // $filter_out(, ) // // Return names with target types which are-a (filter) or not are-a // (filter_out) one of . See $is_a() for background. // fn["filter"] += [](const scope* s, names ns, names ts) { return filter (s, move (ns), move (ts), false /* out */); }; fn["filter_out"] += [](const scope* s, names ns, names ts) { return filter (s, move (ns), move (ts), true /* out */); }; // $size() // // Return the number of elements in the sequence. // fn["size"] += [] (names ns) { size_t n (0); for (auto i (ns.begin ()); i != ns.end (); ++i) { ++n; if (i->pair && !(++i)->directory ()) fail << "name pair in names"; } return n; }; // $sort( [, ]) // // Sort names in ascending order. // // The following flags are supported: // // dedup - in addition to sorting also remove duplicates // fn["sort"] += [] (names ns, optional fs) { //@@ TODO: shouldn't we do this in a pair-aware manner? sort (ns.begin (), ns.end ()); if (functions_sort_flags (move (fs))) ns.erase (unique (ns.begin(), ns.end()), ns.end ()); return ns; }; // $find(, ) // // Return true if the name sequence contains the specified name. // fn["find"] += [](names vs, names v) { //@@ TODO: shouldn't we do this in a pair-aware manner? return find (vs.begin (), vs.end (), convert (move (v))) != vs.end (); }; // $find_index(, ) // // Return the index of the first element in the name sequence that is // equal to the specified name or $size() if none is found. // fn["find_index"] += [](names vs, names v) { //@@ TODO: shouldn't we do this in a pair-aware manner? auto i (find (vs.begin (), vs.end (), convert (move (v)))); return i != vs.end () ? i - vs.begin () : vs.size (); }; // Functions that can be called only on real targets. // function_family ft (m, "target"); // Note that while this function is not technically pure, we don't mark it // as such since it can only be called (normally form a recipe) after the // target has been matched, meaning that this target is a prerequisite and // therefore this impurity has been accounted for. // ft["path"] += [](const scope* s, names ns) { if (s == nullptr) fail << "target.path() called out of scope"; // Most of the time we will have a single target so optimize for that. // small_vector r; for (auto i (ns.begin ()); i != ns.end (); ++i) { name& n (*i), o; const target& t (to_target (*s, move (n), move (n.pair ? *++i : o))); if (const auto* pt = t.is_a ()) { const path& p (pt->path ()); if (&p != &empty_path) r.push_back (p); else fail << "target " << t << " path is not assigned"; } else fail << "target " << t << " is not path-based"; } // We want the result to be path if we were given a single target and // paths if multiple (or zero). The problem is, we cannot distinguish it // based on the argument type (e.g., name vs names) since passing an // out-qualified single target requires two names. // if (r.size () == 1) return value (move (r[0])); return value (paths (make_move_iterator (r.begin ()), make_move_iterator (r.end ()))); }; // This one can only be called on a single target since we don't support // containers of process_path's (though we probably could). // // Note that while this function is not technically pure, we don't mark it // as such for the same reasons as $path() above. // ft["process_path"] += [](const scope* s, names ns) { if (s == nullptr) fail << "target.process_path() called out of scope"; if (ns.empty () || ns.size () != (ns[0].pair ? 2 : 1)) fail << "target.process_path() expects single target"; name o; const target& t ( to_target (*s, move (ns[0]), move (ns[0].pair ? ns[1] : o))); if (const auto* et = t.is_a ()) { process_path r (et->process_path ()); if (r.empty ()) fail << "target " << t << " path is not assigned"; return r; } else fail << "target " << t << " is not process_path-based" << endf; }; // Name-specific overloads from builtins. // function_family fb (m, "builtin"); // Note that while we should normally handle NULL values (relied upon by // the parser to provide concatenation semantics consistent with untyped // values), the result will unlikely be what the user expected. So for now // we keep it a bit tighter. // fb[".concat"] += [](dir_path d, name n) { d /= n.dir; n.dir = move (d); return n; }; } }