1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
// file : build/bin/rule.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#include <build/bin/rule>
#include <build/scope>
#include <build/target>
#include <build/algorithm>
#include <build/diagnostics>
#include <build/bin/target>
using namespace std;
namespace build
{
namespace bin
{
// obj
//
match_result obj_rule::
match (action a, target& t, const std::string&) const
{
fail << diag_doing (a, t) << " target group" <<
info << "explicitly select either obja{} or objso{} member";
return nullptr;
}
recipe obj_rule::
apply (action, target&, const match_result&) const {return empty_recipe;}
// lib
//
// The whole logic is pretty much as if we had our two group
// members as our prerequisites.
//
match_result lib_rule::
match (action a, target& xt, const std::string&) const
{
lib& t (static_cast<lib&> (xt));
// @@ We have to re-query it on each match_only()!
// Get the library type to build. If not set for a target, this
// should be configured at the project scope by init_lib().
//
const string& type (as<string> (*t["bin.lib"]));
bool ar (type == "static" || type == "both");
bool so (type == "shared" || type == "both");
if (!ar && !so)
fail << "unknown library type: " << type <<
info << "'static', 'shared', or 'both' expected";
// Search and pre-match the members. The pre-match here is part
// of the "library meta-information protocol" that could be used
// by the module that actually builds the members. The idea is
// that pre-matching members may populate our prerequisite_targets
// with prerequisite libraries from which others can extract the
// meta-information about the library, such as the options to use
// when linking it, etc.
//
if (ar)
{
if (t.a == nullptr)
t.a = &search<liba> (t.dir, t.name, t.ext, nullptr);
match_only (a, *t.a);
}
if (so)
{
if (t.so == nullptr)
t.so = &search<libso> (t.dir, t.name, t.ext, nullptr);
match_only (a, *t.so);
}
match_result mr (t, &type);
// If there is an outer operation, indicate that we match
// unconditionally so that we don't override ourselves.
//
if (a.outer_operation () != 0)
mr.recipe_action = action (a.meta_operation (), a.operation ());
return mr;
}
recipe lib_rule::
apply (action a, target& xt, const match_result& mr) const
{
lib& t (static_cast<lib&> (xt));
const string& type (*static_cast<const string*> (mr.cpvalue));
bool ar (type == "static" || type == "both");
bool so (type == "shared" || type == "both");
// Now we do full match.
//
if (ar)
build::match (a, *t.a);
if (so)
build::match (a, *t.so);
return &perform;
}
target_state lib_rule::
perform (action a, target& xt)
{
lib& t (static_cast<lib&> (xt));
//@@ Not cool we have to do this again. Looks like we need
// some kind of a cache vs resolved pointer, like in
// prerequisite vs prerequisite_target.
//
//
const string& type (as<string> (*t["bin.lib"]));
bool ar (type == "static" || type == "both");
bool so (type == "shared" || type == "both");
target* m1 (ar ? t.a : nullptr);
target* m2 (so ? t.so : nullptr);
if (current_mode == execution_mode::last)
swap (m1, m2);
target_state r (target_state::unchanged);
if (m1 != nullptr)
r |= execute (a, *m1);
if (m2 != nullptr)
r |= execute (a, *m2);
return r;
}
}
}
|