aboutsummaryrefslogtreecommitdiff
path: root/build/cxx/rule.cxx
blob: b355542d0a3c72b73409ba6db90696b98b693dce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
// file      : build/cxx/rule.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Tools CC
// license   : MIT; see accompanying LICENSE file

#include <build/cxx/rule>

#include <string>
#include <vector>
#include <cstddef>  // size_t
#include <cstdlib>  // exit
#include <utility>  // move()

#include <ext/stdio_filebuf.h>

#include <build/scope>
#include <build/algorithm>
#include <build/process>
#include <build/timestamp>
#include <build/diagnostics>
#include <build/context>

using namespace std;

namespace build
{
  namespace cxx
  {
    // compile
    //
    void* compile::
    match (target& t, const string&) const
    {
      tracer trace ("cxx::compile::match");

      // @@ TODO:
      //
      // - check prerequisites: single source file
      // - check prerequisites: the rest are headers (other ignorable?)
      // - if path already assigned, verify extension?
      //
      // @@ Q:
      //
      // - Wouldn't it make sense to cache source file? Careful: unloading
      //   of dependency info.
      //

      // See if we have a C++ source file.
      //
      for (prerequisite& p: t.prerequisites)
      {
        if (p.type.id == typeid (cxx))
          return &p;
      }

      level3 ([&]{trace << "no c++ source file for target " << t;});
      return nullptr;
    }

    recipe compile::
    select (target& t, void* v) const
    {
      // Derive object file name from target name.
      //
      obj& o (dynamic_cast<obj&> (t));

      if (o.path ().empty ())
        o.path (o.dir / path (o.name + ".o"));

      // Search and match all the existing prerequisites. The injection
      // code (below) takes care of the ones it is adding.
      //
      search_and_match (t);

      // Inject additional prerequisites.
      //
      auto& sp (*static_cast<prerequisite*> (v));
      auto& st (dynamic_cast<cxx&> (*sp.target));

      if (st.mtime () != timestamp_nonexistent)
        inject_prerequisites (o, st, sp.scope);

      return &update;
    }

    // Return the next make prerequisite starting from the specified
    // position and update position to point to the start of the
    // following prerequisite or l.size() if there are none left.
    //
    static string
    next (const string& l, size_t& p)
    {
      size_t n (l.size ());

      // Skip leading spaces.
      //
      for (; p != n && l[p] == ' '; p++) ;

      // Lines containing multiple prerequisites are 80 characters max.
      //
      string r;
      r.reserve (n);

      // Scan the next prerequisite while watching out for escape sequences.
      //
      for (; p != n && l[p] != ' '; p++)
      {
        char c (l[p]);

        if (c == '\\')
          c = l[++p];

        r += c;
      }

      // Skip trailing spaces.
      //
      for (; p != n && l[p] == ' '; p++) ;

      // Skip final '\'.
      //
      if (p == n - 1 && l[p] == '\\')
        p++;

      return r;
    }

    void compile::
    inject_prerequisites (obj& o, const cxx& s, scope& ds) const
    {
      tracer trace ("cxx::compile::inject_prerequisites");

      // We are using absolute source file path in order to get
      // absolute paths in the result. @@ We will also have to
      // use absolute -I paths to guarantee that.
      //
      const char* args[] = {
        "g++-4.9",
        "-std=c++14",
        "-I", src_root.string ().c_str (),
        "-MM",       //@@ -M
        "-MG",      // Treat missing headers as generated.
        "-MQ", "*", // Quoted target (older version can't handle empty name).
        s.path ().string ().c_str (),
        nullptr};

      if (verb >= 2)
        print_process (args);

      level5 ([&]{trace << "target: " << o;});

      try
      {
        process pr (args, false, false, true);

        __gnu_cxx::stdio_filebuf<char> fb (pr.in_ofd, ios_base::in);
        istream is (&fb);

        for (bool first (true); !is.eof (); )
        {
          string l;
          getline (is, l);

          if (is.fail () && !is.eof ())
            fail << "io error while parsing g++ -M output";

          size_t pos (0);

          if (first)
          {
            // Empty output should mean the wait() call below will return
            // false.
            //
            if (l.empty ())
              break;

            assert (l[0] == '*' && l[1] == ':' && l[2] == ' ');
            next (l, (pos = 3)); // Skip the source file.

            first = false;
          }

          while (pos != l.size ())
          {
            path f (next (l, pos));
            f.normalize ();

            assert (f.absolute ()); // Logic below depends on this.

            level5 ([&]{trace << "prerequisite path: " << f.string ();});

            // Split the name into its directory part, the name part, and
            // extension. Here we can assume the name part is a valid
            // filesystem name.
            //
            // Note that if the file has no extension, we record an empty
            // extension rather than NULL (which would signify that the
            // extension needs to be added).
            //
            path d (f.directory ());
            string n (f.leaf ().base ().string ());
            const char* es (f.extension ());
            const string* e (&extension_pool.find (es != nullptr ? es : ""));

            // Find or insert prerequisite.
            //
            // If there is no extension (e.g., standard C++ headers),
            // then assume it is a header. Otherwise, let the standard
            // mechanism derive the type from the extension. @@ TODO.
            //
            prerequisite& p (
              ds.prerequisites.insert (
                hxx::static_type, move (d), move (n), e, ds, trace).first);

            o.prerequisites.push_back (p);

            // Resolve to target.
            //
            path_target& t (
              dynamic_cast<path_target&> (
                p.target != nullptr ? *p.target : search (p)));

            // Assign path.
            //
            if (t.path ().empty ())
              t.path (move (f));

            // Match to a rule.
            //
            build::match (t);
          }
        }

        // We assume the child process issued some diagnostics.
        //
        if (!pr.wait ())
          throw failed ();
      }
      catch (const process_error& e)
      {
        error << "unable to execute " << args[0] << ": " << e.what ();

        // In a multi-threaded program that fork()'ed but did not exec(),
        // it is unwise to try to do any kind of cleanup (like unwinding
        // the stack and running destructors).
        //
        if (e.child ())
          exit (1);

        throw failed ();
      }
    }

    target_state compile::
    update (target& t)
    {
      obj& o (dynamic_cast<obj&> (t));
      cxx* s (update_prerequisites<cxx> (o, o.mtime ()));

      if (s == nullptr)
        return target_state::uptodate;

      // Translate paths to relative (to working directory) ones. This
      // results in easier to read diagnostics.
      //
      path ro (relative_work (o.path ()));
      path rs (relative_work (s->path ()));

      const char* args[] = {
        "g++-4.9",
        "-std=c++14",
        "-g",
        "-I", src_root.string ().c_str (),
        "-c",
        "-o", ro.string ().c_str (),
        rs.string ().c_str (),
        nullptr};

      if (verb >= 1)
        print_process (args);
      else
        text << "c++ " << *s;

      try
      {
        process pr (args);

        if (!pr.wait ())
          throw failed ();

        // Should we go to the filesystem and get the new mtime? We
        // know the file has been modified, so instead just use the
        // current clock time. It has the advantage of having the
        // subseconds precision.
        //
        o.mtime (system_clock::now ());
        return target_state::updated;
      }
      catch (const process_error& e)
      {
        error << "unable to execute " << args[0] << ": " << e.what ();

        // In a multi-threaded program that fork()'ed but did not exec(),
        // it is unwise to try to do any kind of cleanup (like unwinding
        // the stack and running destructors).
        //
        if (e.child ())
          exit (1);

        throw failed ();
      }
    }

    // link
    //
    void* link::
    match (target& t, const string& hint) const
    {
      tracer trace ("cxx::link::match");

      // @@ TODO:
      //
      // - check prerequisites: object files, libraries
      // - if path already assigned, verify extension?
      //
      // @@ Q:
      //
      // - if there is no .o, are we going to check if the one derived
      //   from target exist or can be built? A: No.
      //   What if there is a library. Probably ok if .a, not if .so.
      //   (i.e., a utility library).
      //

      // Scan prerequisites and see if we can work with what we've got.
      //
      bool seen_cxx (false), seen_c (false), seen_obj (false);

      for (prerequisite& p: t.prerequisites)
      {
        if (p.type.id == typeid (cxx)) // @@ Should use is_a (add to p.type).
        {
          if (!seen_cxx)
            seen_cxx = true;
        }
        else if (p.type.id == typeid (c))
        {
          if (!seen_c)
            seen_c = true;
        }
        else if (p.type.id == typeid (obj))
        {
          if (!seen_obj)
            seen_obj = true;
        }
        else
        {
          level3 ([&]{trace << "unexpected prerequisite type " << p.type;});
          return nullptr;
        }
      }

      // We will only chain a C source if there is also a C++ source or we
      // we explicitly told to.
      //
      if (seen_c && !seen_cxx && hint < "cxx")
      {
        level3 ([&]{trace << "c prerequisite(s) without c++ or hint";});
        return nullptr;
      }

      return seen_cxx || seen_c || seen_obj ? &t : nullptr;
    }

    recipe link::
    select (target& t, void*) const
    {
      tracer trace ("cxx::link::select");

      // Derive executable file name from target name.
      //
      exe& e (dynamic_cast<exe&> (t));

      if (e.path ().empty ())
        e.path (e.dir / path (e.name));

      // Process prerequisited: do rule chaining for C and C++ source
      // files as well as search and match.
      //
      for (auto& pr: t.prerequisites)
      {
        prerequisite& p (pr);

        if (p.type.id != typeid (c) && p.type.id != typeid (cxx))
        {
          if (p.target == nullptr)
            search (p);

          build::match (*p.target);
          continue;
        }

        prerequisite& cp (p);

        // Come up with the obj{} prerequisite. The c(xx){} prerequisite
        // directory can be relative (to the scope) or absolute. If it is
        // relative, then use it as is. If it is absolute, then translate
        // it to the corresponding directory under out_root. While the
        // c(xx){} directory is most likely under src_root, it is also
        // possible it is under out_root (e.g., generated source).
        //
        path d;
        if (cp.dir.relative () || cp.dir.sub (out_root))
          d = cp.dir;
        else
        {
          if (!cp.dir.sub (src_root))
            fail << "out of project prerequisite " << cp <<
              info << "specify corresponding obj{} target explicitly";

          d = out_root / cp.dir.leaf (src_root);
        }

        prerequisite& op (
          cp.scope.prerequisites.insert (
            obj::static_type,
            move (d),
            cp.name,
            nullptr,
            cp.scope,
            trace).first);

        // Resolve this prerequisite to target.
        //
        target& ot (search (op));

        // If this target already exists, then it needs to be "compatible"
        // with what we are doing here.
        //
        // This gets a bit tricky. We need to make sure the source files
        // are the same which we can only do by comparing the targets to
        // which they resolve. But we cannot search the ot's prerequisites
        // -- only the rule that matches can. Note, however, that if all
        // this works out, then our next step is to search and match the
        // re-written prerequisite (which points to ot). If things don't
        // work out, then we fail, in which case searching and matching
        // speculatively doesn't really hurt.
        //
        //
        prerequisite* cp1 (nullptr);
        for (prerequisite& p: ot.prerequisites)
        {
          // Ignore some known target types (headers).
          //
          if (p.type.id == typeid (h) ||
              cp.type.id == typeid (cxx) && (p.type.id == typeid (hxx) ||
                                             p.type.id == typeid (ixx) ||
                                             p.type.id == typeid (txx)))
            continue;

          if (p.type.id == typeid (cxx))
          {
            cp1 = &p; // Check the rest of the prerequisites.
            continue;
          }

          fail << "synthesized target for prerequisite " << cp
               << " would be incompatible with existing target " << ot <<
            info << "unknown existing prerequsite type " << p <<
            info << "specify corresponding obj{} target explicitly";
        }

        if (cp1 != nullptr)
        {
          build::match (ot); // Now cp1 should be resolved.

          if (cp.target == nullptr)
            search (cp); // Our own prerequisite, so this is ok.

          if (cp.target != cp1->target)
            fail << "synthesized target for prerequisite " << cp
                 << " would be incompatible with existing target " << ot <<
              info << "existing prerequsite " << *cp1 << " does not "
                 << "match " << cp <<
              info << "specify corresponding obj{} target explicitly";
        }
        else
        {
          ot.prerequisites.push_back (cp);
          build::match (ot);
        }

        // Change the exe{} target's prerequsite from cxx{} to obj{}.
        //
        pr = op;
      }

      return &update;
    }

    target_state link::
    update (target& t)
    {
      // @@ Q:
      //
      // - what are we doing with libraries?
      //

      exe& e (dynamic_cast<exe&> (t));

      if (!update_prerequisites (e, e.mtime ()))
        return target_state::uptodate;

      // Translate paths to relative (to working directory) ones. This
      // results in easier to read diagnostics.
      //
      path re (relative_work (e.path ()));
      vector<path> ro;

      vector<const char*> args {"g++-4.9", "-std=c++14", "-g", "-o"};

      args.push_back (re.string ().c_str ());

      for (const prerequisite& p: t.prerequisites)
      {
        const obj& o (dynamic_cast<const obj&> (*p.target));
        ro.push_back (relative_work (o.path ()));
        args.push_back (ro.back ().string ().c_str ());
      }

      args.push_back (nullptr);

      if (verb >= 1)
        print_process (args);
      else
        text << "ld " << e;

      try
      {
        process pr (args.data ());

        if (!pr.wait ())
          throw failed ();

        // Should we go to the filesystem and get the new mtime? We
        // know the file has been modified, so instead just use the
        // current clock time. It has the advantage of having the
        // subseconds precision.
        //
        e.mtime (system_clock::now ());
        return target_state::updated;
      }
      catch (const process_error& e)
      {
        error << "unable to execute " << args[0] << ": " << e.what ();

        // In a multi-threaded program that fork()'ed but did not exec(),
        // it is unwise to try to do any kind of cleanup (like unwinding
        // the stack and running destructors).
        //
        if (e.child ())
          exit (1);

        throw failed ();
      }
    }
  }
}