1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
|
// file : build/target -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#ifndef BUILD_TARGET
#define BUILD_TARGET
#include <map>
#include <string>
#include <vector>
#include <memory> // unique_ptr
#include <cstddef> // size_t
#include <cstdint> // uint8_t
#include <functional> // reference_wrapper
#include <ostream>
#include <cassert>
#include <utility> // move(), forward(), declval()
#include <iterator>
#include <type_traits>
#include <butl/utility> // reverse_iterate()
#include <butl/multi-index> // map_iterator_adapter
#include <build/types>
#include <build/scope>
#include <build/variable>
#include <build/operation>
#include <build/target-type>
#include <build/target-key>
#include <build/prerequisite>
namespace build
{
class scope;
class target;
target&
search (prerequisite&); // From <build/algorithm>.
// Target state.
//
enum class target_state: std::uint8_t
{
// The order of the enumerators is arranged so that their
// inegral values indicate whether one "overrides" the other
// in the merge operator (see below).
//
unknown,
unchanged,
changed,
postponed,
failed,
group // Target's state is the group's state.
};
std::ostream&
operator<< (std::ostream&, target_state);
inline target_state&
operator |= (target_state& l, target_state r)
{
if (static_cast<std::uint8_t> (r) > static_cast<std::uint8_t> (l))
l = r;
return l;
}
// Recipe.
//
// The returned target state should be changed, unchanged, or
// postponed. If there is an error, then the recipe should throw
// rather than returning failed.
//
// The recipe execution protocol is as follows: before executing
// the recipe, the caller sets the target's state to failed. If
// the recipe returns normally and the target's state is still
// failed, then the caller sets it to the returned value. This
// means that the recipe can set the target's state manually to
// some other value. For example, setting it to unknown will
// result in the recipe to be executed again if this target is a
// prerequisite of another target. Note that in this case the
// returned by the recipe value is still used (by the caller) as
// the resulting target state for this execution of the recipe.
// Returning postponed from the last call to the recipe means
// that the action could not be executed at this time (see fsdir
// clean for an example).
//
using recipe_function = target_state (action, target&);
using recipe = std::function<recipe_function>;
// Commonly-used recipes. The default recipe executes the action
// on all the prerequisites in a loop, skipping ignored. Specially,
// for actions with the "first" execution mode, it calls
// execute_prerequisites() while for those with the "last" mode --
// reverse_execute_prerequisites(); see <build/operation>,
// <build/algorithm> for details. The group recipe calls the group's
// recipe.
//
extern const recipe empty_recipe;
extern const recipe noop_recipe;
extern const recipe default_recipe;
extern const recipe group_recipe;
target_state
noop_action (action, target&); // Defined in <build/algorithm>.
target_state
group_action (action, target&); // Defined in <build/algorithm>.
// Prerequisite references as used in the target::prerequisites list
// below.
//
struct prerequisite_ref: std::reference_wrapper<prerequisite>
{
typedef std::reference_wrapper<prerequisite> base;
using base::base;
// Return true if this reference belongs to the target's prerequisite
// list. Note that this test only works if you use references to
// the container elements and the container hasn't been resized
// since such a reference was obtained. Normally this function is
// used when iterating over a combined prerequisites range (see
// group_prerequisites below).
//
bool
belongs (const target&) const;
};
// A view of target group members.
//
struct group_view
{
target* const* members; // NULL means not yet known.
std::size_t count;
};
// Target.
//
class target
{
public:
virtual
~target () = default;
target (const target&) = delete;
target& operator= (const target&) = delete;
target (dir_path d, std::string n, const std::string* e)
: dir (std::move (d)), name (std::move (n)), ext (e) {}
const dir_path dir; // Absolute and normalized.
const std::string name;
const std::string* ext; // Extension, NULL means unspecified,
// empty means no extension.
// Target group to which this target belongs, if any. Note that
// we assume that the group and all its members are in the same
// scope (for example, in variable lookup). We also don't support
// nested groups.
//
// The semantics of the interaction between the group and its
// members and what it means to, say, update the group, is
// unspecified and determined by the group's type. In particular,
// a group can be created out of member types that have no idea
// they are part of this group (e.g., cli.cxx{}).
//
// Normally, however, there are two kinds of groups: "alternatives"
// and "combination". In an alternatives group, normally one of the
// members is selected when the group is mentioned as a prerequisite
// with, perhaps, an exception for special rules, like aliases, where
// it makes more sense to treat the group as a whole. In this case we
// say that the rule "semantically recognizes" the group and picks
// some of its members.
//
// Updating an alternative group as a whole can mean updating some
// subset of its members (e.g., lib{}). Or the group may not support
// this at all (e.g., obj{}).
//
// In a combination group, when a group is updated, normally all
// members are updates (and usually with a single command), though
// there could be some members that are omitted, depending on the
// configuration (e.g., an inline file not/being generated). When
// a combination group is mentioned as a prerequisite, the rule
// is usually interested in the individual members rather than
// the whole group. For example, a C++ compile rule would like to
// "see" the ?xx{} members when it gets a cli.cxx{} group.
//
// Which brings us to the group iteration mode. The target type
// contains a member called see_through that indicates whether the
// default iteration mode for the group should be "see through";
// that is, whether we see the members or the group itself. For
// the iteration support itself, see the *_prerequisite_members()
// machinery below.
//
target* group {nullptr};
// You should not call this function directly; rather use
// resolve_group_members() from <build/algorithm>.
//
virtual group_view
group_members (action) const;
target_key
key () const {return target_key {&type (), &dir, &name, &ext};}
public:
// Most qualified scope that contains this target.
//
scope&
base_scope () const;
// Root scope of a project that contains this target. Note that
// a target can be out of any (known) project root in which case
// this function asserts. If you need to detect this situation,
// then use base_scope().root_scope() expression instead.
//
scope&
root_scope () const;
// Root scope of a strong amalgamation that contains this target.
// The same notes as to root_scope() apply.
//
scope&
strong_scope () const {return *root_scope ().strong_scope ();}
// Prerequisites.
//
public:
typedef std::vector<prerequisite_ref> prerequisites_type;
prerequisites_type prerequisites;
// Targets to which prerequisites resolve for this recipe. Note
// that unlike prerequisite::target, these can be resolved to
// group members. NULL means the target should be skipped (or
// the rule may simply not add such a target to the list).
//
// Note also that it is possible the target can vary from
// action to action, just like recipes. We don't need to keep
// track of the action here since the targets will be updated
// if the recipe is updated, normally as part of rule::apply().
//
typedef std::vector<target*> prerequisite_targets_type;
prerequisite_targets_type prerequisite_targets;
// Check if there are any prerequisites, taking into account
// group prerequisites.
//
bool
has_prerequisites () const
{
return !prerequisites.empty () ||
(group != nullptr && !group->prerequisites.empty ());
}
// Target-specific variables.
//
public:
variable_map vars;
// Lookup, including in groups to which this target belongs and
// then in outer scopes (including target type/pattern-specific
// variables). If you only want to lookup in this target, do it
// on the the variable map directly.
//
value_proxy
operator[] (const variable&) const;
value_proxy
operator[] (const std::string& name) const
{
return operator[] (variable_pool.find (name));
}
// Return a value_proxy suitable for assignment. See class scope
// for details.
//
value_proxy
assign (const variable& var) {return vars.assign (var).first;}
value_proxy
assign (const std::string& name) {return vars.assign (name).first;}
// Return a value_proxy suitable for appending. See class scope
// for details.
//
value_proxy
append (const variable&);
value_proxy
append (const std::string& name)
{
return append (variable_pool.find (name));
}
public:
target_state raw_state;
target_state
state () const
{
return raw_state != target_state::group ? raw_state : group->raw_state;
}
// Number of direct targets that depend on this target in the current
// action. It is incremented during the match phase and then decremented
// during execution, before running the recipe. As a result, the recipe
// can detect the last chance (i.e., last dependent) to execute the
// command (see also the first/last execution modes in <operation>).
//
// Note that setting a new recipe (which happens when we match the rule
// and which in turn is triggered by the first dependent) clears this
// counter. However, if the previous action was the same as the current,
// then the existing recipe is reused. In this case, however, the counter
// should have been decremented to 0 naturally, as part of the previous
// action execution.
//
std::size_t dependents;
public:
typedef build::action action_type;
action_type action; // Action this recipe is for.
public:
typedef build::recipe recipe_type;
const recipe_type&
recipe (action_type a) const {return a > action ? empty_recipe : recipe_;}
void
recipe (action_type a, recipe_type r)
{
assert (a > action || !recipe_);
action = a;
recipe_ = std::move (r);
// Also reset the target state. If this is a noop recipe, then
// mark the target unchanged so that we don't waste time executing
// the recipe. If this is a group recipe, then mark the state as
// coming from the group.
//
raw_state = target_state::unknown;
if (recipe_function** f = recipe_.target<recipe_function*> ())
{
if (*f == &noop_action)
raw_state = target_state::unchanged;
else if (*f == &group_action)
raw_state = target_state::group;
}
dependents = 0;
}
// Target type info.
//
public:
template <typename T>
T*
is_a () {return dynamic_cast<T*> (this);}
template <typename T>
const T*
is_a () const {return dynamic_cast<const T*> (this);}
virtual const target_type& type () const = 0;
static const target_type static_type;
private:
recipe_type recipe_;
};
std::ostream&
operator<< (std::ostream&, const target&);
// A "range" that presents the prerequisites of a group and one of
// its members as one continuous sequence, or, in other words, as
// if they were in a single container. The group's prerequisites
// come first followed by the member's. If you need to see them
// in the other direction, iterate in reverse, for example:
//
// for (prerequisite_ref& pr: group_prerequisites (t))
//
// for (prerequisite_ref& pr: reverse_iterate (group_prerequisites (t))
//
// Note that in this case the individual elements of each list will
// also be traversed in reverse, but that's what you usually want,
// anyway.
//
class group_prerequisites
{
public:
typedef target::prerequisites_type prerequisites_type;
explicit
group_prerequisites (target& t): t_ (t) {}
struct iterator
{
typedef prerequisites_type::iterator base_iterator;
typedef base_iterator::value_type value_type;
typedef base_iterator::pointer pointer;
typedef base_iterator::reference reference;
typedef base_iterator::difference_type difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
iterator () {}
iterator (target* t, prerequisites_type* c, base_iterator i)
: t_ (t), c_ (c), i_ (i) {}
iterator&
operator++ ()
{
if (++i_ == c_->end () && c_ != &t_->prerequisites)
{
c_ = &t_->prerequisites;
i_ = c_->begin ();
}
return *this;
}
iterator
operator++ (int) {iterator r (*this); operator++ (); return r;}
iterator&
operator-- ()
{
if (i_ == c_->begin () && c_ == &t_->prerequisites)
{
c_ = &t_->group->prerequisites;
i_ = c_->end ();
}
--i_;
return *this;
}
iterator
operator-- (int) {iterator r (*this); operator-- (); return r;}
reference operator* () const {return *i_;}
pointer operator-> () const {return i_.operator -> ();}
friend bool
operator== (const iterator& x, const iterator& y)
{
return x.t_ == y.t_ && x.c_ == y.c_ && x.i_ == y.i_;
}
friend bool
operator!= (const iterator& x, const iterator& y) {return !(x == y);}
private:
target* t_ {nullptr};
prerequisites_type* c_ {nullptr};
base_iterator i_;
};
typedef std::reverse_iterator<iterator> reverse_iterator;
iterator
begin () const
{
auto& c ((t_.group != nullptr && !t_.group->prerequisites.empty ()
? *t_.group : t_).prerequisites);
return iterator (&t_, &c, c.begin ());
}
iterator
end () const
{
auto& c (t_.prerequisites);
return iterator (&t_, &c, c.end ());
}
reverse_iterator
rbegin () const {return reverse_iterator (end ());}
reverse_iterator
rend () const {return reverse_iterator (begin ());}
std::size_t
size () const
{
return t_.prerequisites.size () +
(t_.group != nullptr ? t_.group->prerequisites.size () : 0);
}
private:
target& t_;
};
// A member of a prerequisite. If 'target' is NULL, then this is the
// prerequisite itself. Otherwise, it is its member. In this case
// 'prerequisite' still refers to the prerequisite.
//
struct prerequisite_member
{
typedef build::target target_type;
typedef build::prerequisite prerequisite_type;
prerequisite_ref& prerequisite;
target_type* target;
template <typename T>
bool
is_a () const
{
return target != nullptr
? target->is_a<T> () != nullptr
: prerequisite.get ().is_a<T> ();
}
prerequisite_key
key () const
{
return target != nullptr
? prerequisite_key {&prerequisite.get ().proj, target->key (), nullptr}
: prerequisite.get ().key ();
}
const build::target_type&
type () const
{
return target != nullptr ? target->type () : prerequisite.get ().type;
}
const std::string&
name () const
{
return target != nullptr ? target->name : prerequisite.get ().name;
}
const std::string*
proj () const
{
// Target cannot be project-qualified.
//
return target != nullptr ? nullptr : prerequisite.get ().proj;
}
target_type&
search () const
{
return target != nullptr ? *target : build::search (prerequisite);
}
prerequisite_type&
as_prerequisite (tracer&) const;
};
inline std::ostream&
operator<< (std::ostream& os, const prerequisite_member& pm)
{
return os << pm.key ();
}
// A "range" that presents a sequence of prerequisites (e.g., from
// group_prerequisites()) as a sequence of prerequisite_member's. For
// each group prerequisite you will "see" either the prerequisite
// itself or all its members, depending on the default iteration
// mode of the target group type. You can skip the rest of the
// group members with leave_group() and you can force iteration
// over the members with enter_group(). Usage:
//
// for (prerequisite_member pm: prerequisite_members (a, ...))
//
// Where ... can be:
//
// t.prerequisites
// reverse_iterate(t.prerequisites)
// group_prerequisites (t)
// reverse_iterate (group_prerequisites (t))
//
// But use shortcuts instead:
//
// prerequisite_members (a, t)
// reverse_prerequisite_members (a, t)
// group_prerequisite_members (a, t)
// reverse_group_prerequisite_members (a, t)
//
template <typename T>
class prerequisite_members_range;
template <typename T>
inline prerequisite_members_range<T>
prerequisite_members (action a, T&& x)
{
return prerequisite_members_range<T> (a, std::forward<T> (x));
}
template <typename T>
class prerequisite_members_range
{
public:
prerequisite_members_range (action a, T&& r)
: a_ (a), r_ (std::forward<T> (r)), e_ (r_.end ()) {}
using base_iterator = decltype (std::declval<T> ().begin ());
struct iterator
{
typedef prerequisite_member value_type;
typedef const value_type* pointer;
typedef const value_type& reference;
typedef typename base_iterator::difference_type difference_type;
typedef std::forward_iterator_tag iterator_category;
iterator (): r_ (nullptr) {}
iterator (const prerequisite_members_range* r, const base_iterator& i)
: r_ (r), i_ (i), g_ {nullptr, 0}
{
if (i_ != r_->e_ && i_->get ().type.see_through)
switch_members ();
}
iterator& operator++ ();
iterator operator++ (int) {iterator r (*this); operator++ (); return r;}
// Skip iterating over the rest of this group's members, if any.
// Note that the only valid operation after this call is to
// increment the iterator.
//
void
leave_group ()
{
// Pretend we are on the last member of some group.
//
j_ = 0;
g_.count = 1;
}
// Iterate over this group's members. Similar to leave_group(),
// you should increment the iterator after calling this function.
//
void
enter_group ()
{
switch_members ();
--j_; // Compensate for the increment that will follow.
}
value_type operator* () const
{
return value_type {*i_, g_.count != 0 ? g_.members[j_ - 1] : nullptr};
}
pointer operator-> () const
{
static_assert (
std::is_trivially_destructible<prerequisite_member>::value,
"prerequisite_member is not trivially destructible");
return new (&m_)
value_type {*i_, g_.count != 0 ? g_.members[j_ - 1] : nullptr};
}
friend bool
operator== (const iterator& x, const iterator& y)
{
return x.i_ == y.i_ &&
x.g_.count == y.g_.count &&
(x.g_.count == 0 || x.j_ == y.j_);
}
friend bool
operator!= (const iterator& x, const iterator& y) {return !(x == y);}
private:
void
switch_members ();
private:
const prerequisite_members_range* r_;
base_iterator i_;
group_view g_;
std::size_t j_; // 1-based index, to support enter_group().
mutable std::aligned_storage<sizeof (prerequisite_member),
alignof (prerequisite_member)>::type m_;
};
iterator
begin () const {return iterator (this, r_.begin ());}
iterator
end () const {return iterator (this, e_);}
private:
action a_;
T r_;
base_iterator e_;
};
// prerequisite_members(t.prerequisites)
//
inline auto
prerequisite_members (action a, target& t)
{
return prerequisite_members (a, t.prerequisites);
}
// prerequisite_members(reverse_iterate(t.prerequisites))
//
inline auto
reverse_prerequisite_members (action a, target& t)
{
return prerequisite_members (a, butl::reverse_iterate (t.prerequisites));
}
// prerequisite_members(group_prerequisites (t))
//
inline auto
group_prerequisite_members (action a, target& t)
{
return prerequisite_members (a, group_prerequisites (t));
}
// prerequisite_members(reverse_iterate (group_prerequisites (t)))
//
inline auto
reverse_group_prerequisite_members (action a, target& t)
{
return prerequisite_members (
a, butl::reverse_iterate (group_prerequisites (t)));
}
//
//
struct target_set
{
typedef std::map<target_key, std::unique_ptr<target>> map;
typedef butl::map_iterator_adapter<map::const_iterator> iterator;
iterator
find (const target_key& k, tracer& trace) const;
iterator
find (const target_type& type,
const dir_path& dir,
const std::string& name,
const std::string* ext,
tracer& trace) const
{
return find (target_key {&type, &dir, &name, &ext}, trace);
}
// As above but ignore the extension and return the target or
// nullptr instead of the iterator.
//
template <typename T>
T*
find (const dir_path& dir, const std::string& name) const
{
const std::string* e (nullptr);
auto i (map_.find (target_key {&T::static_type, &dir, &name, &e}));
return i != map_.end () ? static_cast<T*> (i->second.get ()) : nullptr;
}
iterator begin () const {return map_.begin ();}
iterator end () const {return map_.end ();}
std::pair<target&, bool>
insert (const target_type&,
dir_path dir,
std::string name,
const std::string* ext,
tracer&);
template <typename T>
T&
insert (const dir_path& dir,
const std::string& name,
const std::string* ext,
tracer& t)
{
return static_cast<T&> (
insert (T::static_type, dir, name, ext, t).first);
}
template <typename T>
T&
insert (const dir_path& dir, const std::string& name, tracer& t)
{
return static_cast<T&> (
insert (T::static_type, dir, name, nullptr, t).first);
}
void
clear () {map_.clear ();}
private:
map map_;
};
extern target_set targets;
// Modification time-based target.
//
class mtime_target: public target
{
public:
using target::target;
// Target mtime is only available after a rule has been matched
// (because this is when we know if we should get our mtime from
// the group and where the path which we need to load mtime is
// normally assigned). The mtime is also unavailable while the
// execution of the target is postponed (because we temporarily
// loose our group state).
//
// The rule for groups that utilize the group state is as follows:
// if it has any members that are mtime_targets, then the group
// should be mtime_target and the members get the mtime from it.
//
timestamp
mtime () const
{
assert (raw_state != target_state::postponed);
const mtime_target* t (raw_state == target_state::group
? static_cast<const mtime_target*> (group)
: this);
if (t->mtime_ == timestamp_unknown)
t->mtime_ = t->load_mtime ();
return t->mtime_;
}
void
mtime (timestamp mt)
{
// While we can cache the mtime at any time, it may be ignored
// if the target state is group (see the mtime() accessor).
//
mtime_ = mt;
}
protected:
virtual timestamp
load_mtime () const = 0;
public:
static const target_type static_type;
private:
mutable timestamp mtime_ {timestamp_unknown};
};
// Filesystem path-based target.
//
class path_target: public mtime_target
{
public:
using mtime_target::mtime_target;
typedef build::path path_type;
const path_type&
path () const {return path_;}
void
path (path_type p) {assert (path_.empty ()); path_ = std::move (p);}
// Derive a path from target's dir, name, and, if specified, ext.
// If ext is not specified, then use default_ext and also update
// the target's extension (this becomes important if later we need
// to reliably determine whether this file has an extension; think
// hxx{foo.bar.} and hxx.ext is empty).
//
// If name_prefix is not NULL, add it before the name part and after
// the directory. Similarly, if name_suffix is not NULL, add it after
// the name part and before the extension.
//
// Finally, if the path was already assigned to this target, then
// this function verifies that the two are the same.
//
void
derive_path (const char* default_ext = nullptr,
const char* name_prefix = nullptr,
const char* name_suffix = nullptr);
public:
static const target_type static_type;
private:
path_type path_;
};
// File target.
//
class file: public path_target
{
public:
using path_target::path_target;
protected:
// Note that it is final in order to be consistent with file_rule,
// search_existing_file().
//
virtual timestamp
load_mtime () const final;
public:
virtual const target_type& type () const {return static_type;}
static const target_type static_type;
};
// Alias target. It represents a list of targets (its prerequisites)
// as a single "name".
//
class alias: public target
{
public:
using target::target;
public:
virtual const target_type& type () const {return static_type;}
static const target_type static_type;
};
// Directory target. Note that this is not a filesystem directory
// but rather an alias target with the directory name. For actual
// filesystem directory (creation), see fsdir.
//
class dir: public alias
{
public:
using alias::alias;
public:
virtual const target_type& type () const {return static_type;}
static const target_type static_type;
};
// While a filesystem directory is mtime-based, the semantics is
// not very useful in our case. In particular, if another target
// depends on fsdir{}, then all that's desired is the creation of
// the directory if it doesn't already exist. In particular, we
// don't want to update the target just because some unrelated
// entry was created in that directory.
//
class fsdir: public target
{
public:
using target::target;
public:
virtual const target_type& type () const {return static_type;}
static const target_type static_type;
};
// Common documentation file targets.
//
// @@ Maybe these should be in the built-in doc module?
//
class doc: public file
{
public:
using file::file;
public:
virtual const target_type& type () const {return static_type;}
static const target_type static_type;
};
// The problem with man pages is this: different platforms have
// different sets of sections. What seems to be the "sane" set
// is 1-9 (Linux and BSDs). SysV (e.g., Solaris) instead maps
// 8 to 1M (system administration). The section determines two
// things: the directory where the page is installed (e.g.,
// /usr/share/man/man1) as well as the extension of the file
// (e.g., test.1). Note also that there could be sub-sections,
// e.g., 1p (for POSIX). Such a page would still go into man1
// but will have the .1p extension (at least that's what happens
// on Linux). The challenge is to somehow handle this in a
// portable manner. So here is the plan:
//
// First of all, we have the man{} target type which can be used
// for a custom man page. That is, you can have any extension and
// install it anywhere you please:
//
// man{foo.X}: install = man/manX
//
// Then we have man1..9{} target types which model the "sane"
// section set and that would be automatically installed into
// correct locations on other platforms. In other words, the
// idea is that you should be able to have the foo.8 file,
// write man8{foo} and have it installed as man1m/foo.1m on
// some SysV host.
//
// Re-mapping the installation directory is easy: to help with
// that we have assigned install.man1..9 directory names. The
// messy part is to change the extension. It seems the only
// way to do that would be to have special logic for man pages
// in the generic install rule. @@ This is still a TODO.
//
// Note that handling subsections with man1..9{} is easy, we
// simply specify the extension explicitly, e.g., man{foo.1p}.
//
class man: public doc
{
public:
using doc::doc;
public:
virtual const target_type& type () const {return static_type;}
static const target_type static_type;
};
class man1: public man
{
public:
using man::man;
public:
virtual const target_type& type () const {return static_type;}
static const target_type static_type;
};
// Common implementation of the target factory, extension, and
// search functions.
//
template <typename T>
target*
target_factory (dir_path d, std::string n, const std::string* e)
{
return new T (std::move (d), std::move (n), e);
}
// Return fixed target extension.
//
template <const char* ext>
const std::string&
target_extension_fix (const target_key&, scope&);
// Get the extension from the variable.
//
template <const char* var>
const std::string&
target_extension_var (const target_key&, scope&);
// The default behavior, that is, look for an existing target in the
// prerequisite's directory scope.
//
target*
search_target (const prerequisite_key&);
// First look for an existing target as above. If not found, then look
// for an existing file in the target-type-specific list of paths.
//
target*
search_file (const prerequisite_key&);
}
#include <build/target.ixx>
#include <build/target.txx>
#endif // BUILD_TARGET
|