1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
// file : build/variable -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Tools CC
// license : MIT; see accompanying LICENSE file
#ifndef BUILD_VARIABLE
#define BUILD_VARIABLE
#include <string>
#include <memory> // unique_ptr
#include <cstddef> // nullptr_t
#include <utility> // move()
#include <cassert>
#include <functional> // hash
#include <typeindex>
#include <unordered_set>
#include <build/path>
#include <build/name>
#include <build/prefix-map>
namespace build
{
struct value;
struct value_type
{
std::type_index id;
value* (*const factory) ();
};
// variable
//
// The two variables are considered the same if they have the same name.
//
struct variable
{
explicit
variable (std::string n): name (std::move (n)), type (nullptr) {}
std::string name;
const value_type* type; // If NULL, then this variable has no fixed type.
};
inline bool
operator== (const variable& x, const variable& y) {return x.name == y.name;}
typedef std::reference_wrapper<const variable> variable_cref;
// value
//
struct value;
typedef std::unique_ptr<value> value_ptr;
struct value
{
public:
virtual value_ptr
clone () const = 0;
virtual bool
compare (const value&) const = 0;
virtual
~value () = default;
};
struct list_value: value, names
{
public:
list_value (names d): names (std::move (d)) {}
list_value (std::string d) {emplace_back (std::move (d));}
list_value (dir_path d) {emplace_back (std::move (d));}
virtual value_ptr
clone () const {return value_ptr (new list_value (*this));}
virtual bool
compare (const value& v) const
{
const list_value* lv (dynamic_cast<const list_value*> (&v));
return lv != nullptr && static_cast<const names&> (*this) == *lv;
}
};
typedef std::unique_ptr<list_value> list_value_ptr;
// value_proxy
//
// A variable can be undefined, null, or contain some actual value.
//
struct variable_map;
struct value_proxy
{
bool
defined () const {return p != nullptr;}
bool
null () const {return *p == nullptr;}
explicit operator bool () const {return defined () && !null ();}
explicit operator value_ptr& () const {return *p;}
// Get interface. See available specializations below.
//
template <typename T>
T
as () const = delete;
// Set interface.
//
const value_proxy&
operator= (value_ptr) const;
const value_proxy&
operator= (const value_proxy&) const;
const value_proxy&
operator= (std::string) const;
// Append enother simple name to list_value.
//
const value_proxy&
operator+= (std::string) const;
const value_proxy&
operator= (dir_path) const;
const value_proxy&
operator= (nullptr_t) const;
// Return true if this value belongs to the specified scope or target.
//
template <typename T>
bool
belongs (const T& x) const {return map == &x.vars;}
// Implementation details.
//
const variable_map* map; // Variable map to which this value belongs.
value_proxy (value_ptr* p, const variable_map* m): map (m), p (p) {}
private:
value_ptr* p;
};
template <>
inline value& value_proxy::
as<value&> () const {return **p;}
template <>
inline const value& value_proxy::
as<const value&> () const {return **p;}
template <>
list_value& value_proxy::
as<list_value&> () const;
template <>
inline const list_value& value_proxy::
as<const list_value&> () const {return as<list_value&> ();}
template <>
const std::string& value_proxy::
as<const std::string&> () const;
template <>
const dir_path& value_proxy::
as<const dir_path&> () const;
}
namespace std
{
template <>
struct hash<build::variable>: hash<string>
{
size_t
operator() (const build::variable& v) const noexcept
{
return hash<string>::operator() (v.name);
}
};
}
namespace build
{
// variable_pool
//
struct variable_set: std::unordered_set<variable>
{
// @@ Need to check/set type?
//
const variable&
find (std::string name) {return *emplace (std::move (name)).first;}
};
extern variable_set variable_pool;
// variable_map
//
template <>
struct compare_prefix<variable_cref>: compare_prefix<std::string>
{
typedef compare_prefix<std::string> base;
explicit
compare_prefix (char d): base (d) {}
bool
operator() (const variable& x, const variable& y) const
{
return base::operator() (x.name, y.name);
}
bool
prefix (const variable& p, const variable& k) const
{
return base::prefix (p.name, k.name);
}
};
struct variable_map: prefix_map<variable_cref, value_ptr, '.'>
{
typedef prefix_map<variable_cref, value_ptr, '.'> base;
value_proxy
operator[] (const variable& var) const
{
auto i (find (var));
return i != end ()
// @@ To do this properly we seem to need ro_value_proxy.
//
? value_proxy (&const_cast<value_ptr&> (i->second), this)
: value_proxy (nullptr, nullptr);
}
value_proxy
operator[] (const std::string& name) const
{
return operator[] (variable_pool.find (name));
}
value_proxy
assign (const variable& var)
{
return value_proxy (&base::operator[] (var), this);
}
value_proxy
assign (const std::string& name)
{
return assign (variable_pool.find (name));
}
std::pair<iterator, iterator>
find_namespace (const std::string& ns)
{
return find_prefix (variable_pool.find (ns));
}
std::pair<const_iterator, const_iterator>
find_namespace (const std::string& ns) const
{
return find_prefix (variable_pool.find (ns));
}
};
}
#include <build/variable.ixx>
#endif // BUILD_VARIABLE
|