1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
|
// file : build2/target.hxx -*- C++ -*-
// copyright : Copyright (c) 2014-2019 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#ifndef BUILD2_TARGET_HXX
#define BUILD2_TARGET_HXX
#include <iterator> // tags, etc.
#include <type_traits> // aligned_storage
#include <unordered_map>
#include <libbutl/multi-index.mxx> // map_iterator_adapter
#include <build2/types.hxx>
#include <build2/utility.hxx>
#include <build2/scope.hxx>
#include <build2/action.hxx>
#include <build2/variable.hxx>
#include <build2/target-key.hxx>
#include <build2/target-type.hxx>
#include <build2/target-state.hxx>
#include <build2/prerequisite.hxx>
namespace build2
{
class rule;
class scope;
class target;
extern size_t current_on; // From <build/context>.
// From <build2/algorithm.hxx>.
//
const target& search (const target&, const prerequisite&);
const target* search_existing (const prerequisite&);
// Recipe.
//
// The returned target state is normally changed or unchanged. If there is
// an error, then the recipe should throw failed rather than returning (this
// is the only exception that a recipe can throw).
//
// The return value of the recipe is used to update the target state. If it
// is target_state::group then the target's state is the group's state.
//
// The recipe may also return postponed in which case the target state is
// assumed to be unchanged (normally this means a prerequisite was postponed
// and while the prerequisite will be re-examined via another dependency,
// this target is done).
//
// Note that max size for the "small capture optimization" in std::function
// ranges (in pointer sizes) from 0 (GCC prior to 5) to 2 (GCC 5) to 6 (VC
// 14.2). With the size ranging (in bytes for 64-bit target) from 32 (GCC)
// to 64 (VC).
//
using recipe_function = target_state (action, const target&);
using recipe = function<recipe_function>;
// Commonly-used recipes. The default recipe executes the action on
// all the prerequisites in a loop, skipping ignored. Specifically,
// for actions with the "first" execution mode, it calls
// execute_prerequisites() while for those with the "last" mode --
// reverse_execute_prerequisites(); see <build2/operation.hxx>,
// <build2/algorithm.hxx> for details. The group recipe call's the group's
// recipe.
//
extern const recipe empty_recipe;
extern const recipe noop_recipe;
extern const recipe default_recipe;
extern const recipe group_recipe;
target_state
noop_action (action, const target&); // Defined in <build2/algorithm.hxx>.
target_state
group_action (action, const target&); // Defined in <build2/algorithm.hxx>.
// A view of target group members.
//
struct group_view
{
const target* const* members; // NULL means not yet known.
size_t count;
};
// List of prerequisites resolved to targets. Unless additional storage is
// needed, it can be used as just vector<const target*> (which is what we
// used to have initially).
//
struct prerequisite_target
{
using target_type = build2::target;
prerequisite_target (const target_type* t, bool a = false, uintptr_t d = 0)
: target (t), adhoc (a), data (d) {}
prerequisite_target (const target_type* t, include_type a, uintptr_t d = 0)
: prerequisite_target (t, a == include_type::adhoc, d) {}
operator const target_type*& () {return target;}
operator const target_type* () const {return target;}
const target_type* operator-> () const {return target;}
const target_type* target;
bool adhoc; // True if include=adhoc.
uintptr_t data;
};
using prerequisite_targets = vector<prerequisite_target>;
// A rule match is an element of hint_rule_map.
//
using rule_match = pair<const string, reference_wrapper<const rule>>;
// Target.
//
class target
{
optional<string>* ext_; // Reference to value in target_key.
public:
// For targets that are in the src tree of a project we also keep the
// corresponding out directory. As a result we may end up with multiple
// targets for the same file if we are building multiple configurations of
// the same project at once. We do it this way because, in a sense, a
// target's out directory is its "configuration" (in terms of variables).
// As an example, consider installing the same README file (src) but for
// two different project configurations at once. Which installation
// directory should we use? The answer depends on which configuration you
// ask.
//
// Empty out directory indicates this target is in the out tree (including
// when src == out). We also treat out of project targets as being in the
// out tree.
//
const dir_path dir; // Absolute and normalized.
const dir_path out; // Empty or absolute and normalized.
const string name;
const string* ext () const; // Return NULL if not specified.
const string& ext (string);
const dir_path&
out_dir () const {return out.empty () ? dir : out;}
// A target that is not (yet) entered as part of a real dependency
// declaration (for example, that is entered as part of a target-specific
// variable assignment, dependency extraction, etc) is called implied.
//
// The implied flag should only be cleared during the load phase via the
// MT-safe target_set::insert().
//
bool implied;
// Target group to which this target belongs, if any. Note that we assume
// that the group and all its members are in the same scope (for example,
// in variable lookup). We also don't support nested groups (with an
// exception for ad hoc groups; see below).
//
// The semantics of the interaction between the group and its members and
// what it means to, say, update the group, is unspecified and is
// determined by the group's type. In particular, a group can be created
// out of member types that have no idea they are part of this group
// (e.g., cli.cxx{}).
//
// Normally, however, there are two kinds of groups: "all" and "choice".
// In a choice-group, normally one of the members is selected when the
// group is mentioned as a prerequisite with, perhaps, an exception for
// special rules, like aliases, where it makes more sense to treat such
// group prerequisites as a whole. In this case we say that the rule
// "semantically recognizes" the group and picks some of its members.
//
// Updating a choice-group as a whole can mean updating some subset of its
// members (e.g., lib{}). Or the group may not support this at all (e.g.,
// obj{}).
//
// In an all-group, when a group is updated, normally all its members are
// updates (and usually with a single command), though there could be some
// members that are omitted, depending on the configuration (e.g., an
// inline file not/being generated). When an all-group is mentioned as a
// prerequisite, the rule is usually interested in the individual members
// rather than the whole group. For example, a C++ compile rule would like
// to "see" the ?xx{} members when it gets a cli.cxx{} group.
//
// Which brings us to the group iteration mode. The target type contains a
// member called see_through that indicates whether the default iteration
// mode for the group should be "see through"; that is, whether we see the
// members or the group itself. For the iteration support itself, see the
// *_prerequisite_members() machinery below.
//
// In an all-group we usually want the state (and timestamp; see mtime())
// for members to come from the group. This is achieved with the special
// target_state::group state. You would normally also use the group_recipe
// for group members.
//
// Note that the group-member link-up can happen anywhere between the
// member creation and rule matching so reading the group before the
// member has been matched can be racy.
//
const target* group = nullptr;
// What has been described above is a "explicit" group. That is, there is
// a dedicated target type that explicitly serves as a group and there is
// an explicit mechanism for discovering the group's members.
//
// However, sometimes, we may want to create a group on the fly out of a
// normal target type. For example, we have the libs{} target type. But
// on Windows a shared library consist of (at least) two files: the import
// library and the DLL itself. So we somehow need to be able to capture
// that. One approach would be to imply the presence of the second file.
// However, that means that a lot of generic rules (e.g., clean, install,
// etc) will need to know about this special semantics on Windows. Also,
// there would be no convenient way to customize things like extensions,
// etc (for which we use target-specific variables). In other words, it
// would be much easier and more consistent to make these extra files
// proper targets.
//
// So to support this requirement we have "ad hoc" groups. The idea is
// that any target can be turned (by the rule that matched it) into an ad
// hoc group by chaining several targets. Ad hoc groups have a more
// restricted semantics compared to the normal groups. In particular:
//
// - The ad hoc group itself is in a sense its first/primary target.
//
// - Group member's recipes should be set to group_recipe by the group's
// rule.
//
// - Members are discovered lazily, they are only known after the group's
// rule's apply() call.
//
// - Members cannot be used as prerequisites but can be used as targets
// - (e.g., to set variables, etc).
//
// - Members don't have prerequisites.
//
// - Ad hoc group cannot have sub-groups (of any kind) though an ad hoc
// group can be a sub-group of an explicit group.
//
// - Member variable lookup skips the ad hoc group (since the group is the
// first member, this is normally what we want).
//
// Note that ad hoc groups can be part of explicit groups. In a sense, we
// have a two-level grouping: an explicit group with its members each of
// which can be an ad hoc group. For example, lib{} contains libs{} which
// may have an import stub as its ad hoc member.
//
// Use add_adhoc_member(), find_adhoc_member() from algorithms to manage
// ad hoc members.
//
const_ptr<target> member = nullptr;
bool
adhoc_group () const
{
// An ad hoc group can be a member of a normal group.
//
return member != nullptr &&
(group == nullptr || group->member == nullptr);
}
bool
adhoc_member () const
{
return group != nullptr && group->member != nullptr;
}
public:
// Normally you should not call this function directly and rather use
// resolve_members() from algorithm.hxx.
//
virtual group_view
group_members (action) const;
// Note that the returned key "tracks" the target (except for the
// extension).
//
target_key
key () const;
// Scoping.
//
public:
// Most qualified scope that contains this target.
//
const scope&
base_scope () const;
// Root scope of a project that contains this target. Note that
// a target can be out of any (known) project root in which case
// this function asserts. If you need to detect this situation,
// then use base_scope().root_scope() expression instead.
//
const scope&
root_scope () const;
// Root scope of a strong amalgamation that contains this target.
// The same notes as to root_scope() apply.
//
const scope&
strong_scope () const {return *root_scope ().strong_scope ();}
// Root scope of the outermost amalgamation that contains this target.
// The same notes as to root_scope() apply.
//
const scope&
weak_scope () const {return *root_scope ().weak_scope ();}
bool
in (const scope& s) const
{
return out_dir ().sub (s.out_path ());
}
// Prerequisites.
//
// We use an atomic-empty semantics that allows one to "swap in" a set of
// prerequisites if none were specified. This is used to implement
// "synthesized" dependencies.
//
public:
using prerequisites_type = build2::prerequisites;
const prerequisites_type&
prerequisites () const;
// Swap-in a list of prerequisites. Return false if unsuccessful (i.e.,
// someone beat us to it). Note that it can be called on const target.
//
bool
prerequisites (prerequisites_type&&) const;
// Check if there are any prerequisites. Note that the group version may
// be racy (see target::group).
//
bool
has_prerequisites () const
{
return !prerequisites ().empty ();
}
bool
has_group_prerequisites () const
{
return has_prerequisites () ||
(group != nullptr && !group->has_prerequisites ());
}
private:
friend class parser;
// Note that the state is also used to synchronize the prerequisites
// value so we use the release-acquire ordering.
//
// 0 - absent
// 1 - being set
// 2 - present
//
atomic<uint8_t> prerequisites_state_ {0};
prerequisites_type prerequisites_;
static const prerequisites_type empty_prerequisites_;
// Target-specific variables.
//
// See also rule-specific variables below.
//
public:
variable_map vars;
// Lookup, including in groups to which this target belongs and then in
// outer scopes (including target type/pattern-specific variables). If you
// only want to lookup in this target, do it on the variable map directly
// (and note that there will be no overrides).
//
lookup
operator[] (const variable& var) const
{
return find (var).first;
}
lookup
operator[] (const variable* var) const // For cached variables.
{
assert (var != nullptr);
return operator[] (*var);
}
lookup
operator[] (const string& name) const
{
const variable* var (var_pool.find (name));
return var != nullptr ? operator[] (*var) : lookup ();
}
// As above but also return the depth at which the value is found. The
// depth is calculated by adding 1 for each test performed. So a value
// that is from the target will have depth 1. That from the group -- 2.
// From the innermost scope's target type/patter-specific variables --
// 3. From the innermost scope's variables -- 4. And so on. The idea is
// that given two lookups from the same target, we can say which one came
// earlier. If no value is found, then the depth is set to ~0.
//
pair<lookup, size_t>
find (const variable& var) const
{
auto p (find_original (var));
return var.overrides == nullptr
? p
: base_scope ().find_override (var, move (p), true);
}
// If target_only is true, then only look in target and its target group
// without continuing in scopes.
//
pair<lookup, size_t>
find_original (const variable&, bool target_only = false) const;
// Return a value suitable for assignment. See scope for details.
//
value&
assign (const variable& var) {return vars.assign (var);}
value&
assign (const variable* var) {return vars.assign (var);} // For cached.
// Return a value suitable for appending. See scope for details.
//
value&
append (const variable&);
// Target operation state.
//
public:
// Atomic task count that is used during match and execution to track the
// target's "meta-state" as well as the number of its sub-tasks (e.g.,
// busy+1, busy+2, and so on, for instance, number of prerequisites
// being matched or executed).
//
// For each operation in a meta-operation batch (current_on) we have a
// "band" of counts, [touched, executed], that represent the target
// meta-state. Once the next operation is started, this band "moves" thus
// automatically resetting the target to "not yet touched" state for this
// operation.
//
// The target is said to be synchronized (in this thread) if we have
// either observed the task count to reach applied or executed or we have
// successfully changed it (via compare_exchange) to locked or busy. If
// the target is synchronized, then we can access and modify (second case)
// its state etc.
//
static const size_t offset_touched = 1; // Target has been locked.
static const size_t offset_tried = 2; // Rule match has been tried.
static const size_t offset_matched = 3; // Rule has been matched.
static const size_t offset_applied = 4; // Rule has been applied.
static const size_t offset_executed = 5; // Recipe has been executed.
static const size_t offset_busy = 6; // Match/execute in progress.
static size_t count_base () {return 5 * (current_on - 1);}
static size_t count_touched () {return offset_touched + count_base ();}
static size_t count_tried () {return offset_tried + count_base ();}
static size_t count_matched () {return offset_matched + count_base ();}
static size_t count_applied () {return offset_applied + count_base ();}
static size_t count_executed () {return offset_executed + count_base ();}
static size_t count_busy () {return offset_busy + count_base ();}
// Inner/outer operation state. See operation.hxx for details.
//
class opstate
{
public:
mutable atomic_count task_count {0}; // Start offset_touched - 1.
// Number of direct targets that depend on this target in the current
// operation. It is incremented during match and then decremented during
// execution, before running the recipe. As a result, the recipe can
// detect the last chance (i.e., last dependent) to execute the command
// (see also the first/last execution modes in <operation.hxx>).
//
mutable atomic_count dependents {0};
// Matched rule (pointer to hint_rule_map element). Note that in case of
// a direct recipe assignment we may not have a rule (NULL).
//
const rule_match* rule;
// Applied recipe.
//
build2::recipe recipe;
// Target state for this operation. Note that it is undetermined until
// a rule is matched and recipe applied (see set_recipe()).
//
target_state state;
// Rule-specific variables.
//
// The rule (for this action) has to be matched before these variables
// can be accessed and only the rule being matched can modify them (so
// no iffy modifications of the group's variables by member's rules).
//
// They are also automatically cleared before another rule is matched,
// similar to the data pad. In other words, rule-specific variables are
// only valid for this match-execute phase.
//
variable_map vars;
// Lookup, continuing in the target-specific variables, etc. Note that
// the group's rule-specific variables are not included. If you only
// want to lookup in this target, do it on the variable map directly
// (and note that there will be no overrides).
//
lookup
operator[] (const variable& var) const
{
return find (var).first;
}
lookup
operator[] (const variable* var) const // For cached variables.
{
assert (var != nullptr);
return operator[] (*var);
}
lookup
operator[] (const string& name) const
{
const variable* var (var_pool.find (name));
return var != nullptr ? operator[] (*var) : lookup ();
}
// As above but also return the depth at which the value is found. The
// depth is calculated by adding 1 for each test performed. So a value
// that is from the rule will have depth 1. That from the target - 2,
// and so on, similar to target-specific variables.
//
pair<lookup, size_t>
find (const variable& var) const
{
auto p (find_original (var));
return var.overrides == nullptr
? p
: target_->base_scope ().find_override (var, move (p), true, true);
}
// If target_only is true, then only look in target and its target group
// without continuing in scopes.
//
pair<lookup, size_t>
find_original (const variable&, bool target_only = false) const;
// Return a value suitable for assignment. See target for details.
//
value&
assign (const variable& var) {return vars.assign (var);}
value&
assign (const variable* var) {return vars.assign (var);} // For cached.
public:
opstate (): vars (false /* global */) {}
private:
friend class target_set;
const target* target_ = nullptr; // Back-pointer, set by target_set.
};
action_state<opstate> state;
opstate& operator[] (action a) {return state[a];}
const opstate& operator[] (action a) const {return state[a];}
// This function should only be called during match if we have observed
// (synchronization-wise) that this target has been matched (i.e., the
// rule has been applied) for this action.
//
target_state
matched_state (action, bool fail = true) const;
// See try_match().
//
pair<bool, target_state>
try_matched_state (action, bool fail = true) const;
// After the target has been matched and synchronized, check if the target
// is known to be unchanged. Used for optimizations during search & match.
//
bool
unchanged (action a) const
{
return matched_state_impl (a).second == target_state::unchanged;
}
// This function should only be called during execution if we have
// observed (synchronization-wise) that this target has been executed.
//
target_state
executed_state (action, bool fail = true) const;
protected:
// Version that should be used during match after the target has been
// matched for this action.
//
// Indicate whether there is a rule match with the first half of the
// result (see try_match()).
//
pair<bool, target_state>
matched_state_impl (action) const;
// Return fail-untranslated (but group-translated) state assuming the
// target is executed and synchronized.
//
target_state
executed_state_impl (action) const;
// Return true if the state comes from the group. Target must be at least
// matched.
//
bool
group_state (action) const;
public:
// Targets to which prerequisites resolve for this action. Note that
// unlike prerequisite::target, these can be resolved to group members.
// NULL means the target should be skipped (or the rule may simply not add
// such a target to the list).
//
// Note also that it is possible the target can vary from action to
// action, just like recipes. We don't need to keep track of the action
// here since the targets will be updated if the recipe is updated,
// normally as part of rule::apply().
//
// Note that the recipe may modify this list.
//
mutable action_state<build2::prerequisite_targets> prerequisite_targets;
// Auxilary data storage.
//
// A rule that matches (i.e., returns true from its match() function) may
// use this pad to pass data between its match and apply functions as well
// as the recipe. After the recipe is executed, the data is destroyed by
// calling data_dtor (if not NULL). The rule should static assert that the
// size of the pad is sufficient for its needs.
//
// Note also that normally at least 2 extra pointers may be stored without
// a dynamic allocation in the returned recipe (small object optimization
// in std::function). So if you need to pass data only between apply() and
// the recipe, then this might be a more convenient way.
//
// Note also that a rule that delegates to another rule may not be able to
// use this mechanism fully since the delegated-to rule may also need the
// data pad.
//
// Currenly the data is not destroyed until the next match.
//
// Note that the recipe may modify the data. Currently reserved for the
// inner part of the action.
//
static constexpr size_t data_size = sizeof (string) * 16;
mutable std::aligned_storage<data_size>::type data_pad;
mutable void (*data_dtor) (void*) = nullptr;
template <typename R,
typename T = typename std::remove_cv<
typename std::remove_reference<R>::type>::type>
typename std::enable_if<std::is_trivially_destructible<T>::value,T&>::type
data (R&& d) const
{
assert (sizeof (T) <= data_size && data_dtor == nullptr);
return *new (&data_pad) T (forward<R> (d));
}
template <typename R,
typename T = typename std::remove_cv<
typename std::remove_reference<R>::type>::type>
typename std::enable_if<!std::is_trivially_destructible<T>::value,T&>::type
data (R&& d) const
{
assert (sizeof (T) <= data_size && data_dtor == nullptr);
T& r (*new (&data_pad) T (forward<R> (d)));
data_dtor = [] (void* p) {static_cast<T*> (p)->~T ();};
return r;
}
template <typename T>
T&
data () const {return *reinterpret_cast<T*> (&data_pad);}
void
clear_data () const
{
if (data_dtor != nullptr)
{
data_dtor (&data_pad);
data_dtor = nullptr;
}
}
// Target type info and casting.
//
public:
const target*
is_a (const target_type& tt) const {
return type ().is_a (tt) ? this : nullptr;}
template <typename T>
T*
is_a () {return dynamic_cast<T*> (this);}
template <typename T>
const T*
is_a () const {return dynamic_cast<const T*> (this);}
// Unchecked cast.
//
template <typename T>
T&
as () {return static_cast<T&> (*this);}
template <typename T>
const T&
as () const {return static_cast<const T&> (*this);}
// Dynamic derivation to support define.
//
const target_type* derived_type = nullptr;
const target_type&
type () const
{
return derived_type != nullptr ? *derived_type : dynamic_type ();
}
virtual const target_type& dynamic_type () const = 0;
static const target_type static_type;
public:
// Split the name leaf into target name (in place) and extension
// (returned).
//
static optional<string>
split_name (string&, const location&);
// Combine the target name and extension into the name leaf.
//
// If the target type has the default extension, then "escape" the
// existing extension if any.
//
static void
combine_name (string&, const optional<string>&, bool default_extension);
// Targets should be created via the targets set below.
//
public:
target (dir_path d, dir_path o, string n)
: dir (move (d)), out (move (o)), name (move (n)),
vars (false /* global */) {}
target (target&&) = delete;
target& operator= (target&&) = delete;
target (const target&) = delete;
target& operator= (const target&) = delete;
virtual
~target ();
friend class target_set;
};
// All targets are from the targets set below.
//
inline bool
operator== (const target& x, const target& y) {return &x == &y;}
inline bool
operator!= (const target& x, const target& y) {return !(x == y);}
inline ostream&
operator<< (ostream& os, const target& t) {return os << t.key ();}
// Sometimes it is handy to "mark" a pointer to a target (for example, in
// prerequisite_targets). We use the last 2 bits in a pointer for that (aka
// the "bit stealing" technique). Note that the pointer needs to be unmarked
// before it can be usable so care must be taken in the face of exceptions,
// etc.
//
void
mark (const target*&, uint8_t = 1);
uint8_t
marked (const target*); // Can be used as a predicate or to get the mark.
uint8_t
unmark (const target*&);
// A "range" that presents the prerequisites of a group and one of
// its members as one continuous sequence, or, in other words, as
// if they were in a single container. The group's prerequisites
// come first followed by the member's. If you need to see them
// in the other direction, iterate in reverse, for example:
//
// for (prerequisite& p: group_prerequisites (t))
//
// for (prerequisite& p: reverse_iterate (group_prerequisites (t))
//
// Note that in this case the individual elements of each list will
// also be traversed in reverse, but that's what you usually want,
// anyway.
//
// Note that you either should be iterating over a locked target (e.g., in
// rule's match() or apply()) or you should call resolve_group().
//
class group_prerequisites
{
public:
explicit
group_prerequisites (const target& t)
: t_ (t),
g_ (t_.group == nullptr ||
t_.group->member != nullptr || // Ad hoc group member.
t_.group->prerequisites ().empty ()
? nullptr : t_.group) {}
explicit
group_prerequisites (const target& t, const target* g)
: t_ (t),
g_ (g == nullptr ||
g->prerequisites ().empty ()
? nullptr : g) {}
using prerequisites_type = target::prerequisites_type;
using base_iterator = prerequisites_type::const_iterator;
struct iterator
{
using value_type = base_iterator::value_type;
using pointer = base_iterator::pointer;
using reference = base_iterator::reference;
using difference_type = base_iterator::difference_type;
using iterator_category = std::bidirectional_iterator_tag;
iterator () {}
iterator (const target* t,
const target* g,
const prerequisites_type* c,
base_iterator i): t_ (t), g_ (g), c_ (c), i_ (i) {}
iterator&
operator++ ()
{
if (++i_ == c_->end () && c_ != &t_->prerequisites ())
{
c_ = &t_->prerequisites ();
i_ = c_->begin ();
}
return *this;
}
iterator
operator++ (int) {iterator r (*this); operator++ (); return r;}
iterator&
operator-- ()
{
if (i_ == c_->begin () && c_ == &t_->prerequisites ())
{
c_ = &g_->prerequisites ();
i_ = c_->end ();
}
--i_;
return *this;
}
iterator
operator-- (int) {iterator r (*this); operator-- (); return r;}
reference operator* () const {return *i_;}
pointer operator-> () const {return i_.operator -> ();}
friend bool
operator== (const iterator& x, const iterator& y)
{
return x.t_ == y.t_ && x.g_ == y.g_ && x.c_ == y.c_ && x.i_ == y.i_;
}
friend bool
operator!= (const iterator& x, const iterator& y) {return !(x == y);}
private:
const target* t_ = nullptr;
const target* g_ = nullptr;
const prerequisites_type* c_ = nullptr;
base_iterator i_;
};
using reverse_iterator = std::reverse_iterator<iterator>;
iterator
begin () const
{
auto& c ((g_ != nullptr ? *g_ : t_).prerequisites ());
return iterator (&t_, g_, &c, c.begin ());
}
iterator
end () const
{
auto& c (t_.prerequisites ());
return iterator (&t_, g_, &c, c.end ());
}
reverse_iterator
rbegin () const {return reverse_iterator (end ());}
reverse_iterator
rend () const {return reverse_iterator (begin ());}
size_t
size () const
{
return t_.prerequisites ().size () +
(g_ != nullptr ? g_->prerequisites ().size () : 0);
}
private:
const target& t_;
const target* g_;
};
// A member of a prerequisite. If 'member' is NULL, then this is the
// prerequisite itself. Otherwise, it is its member. In this case
// 'prerequisite' still refers to the prerequisite.
//
struct prerequisite_member
{
using scope_type = build2::scope;
using target_type = build2::target;
using prerequisite_type = build2::prerequisite;
using target_type_type = build2::target_type;
const prerequisite_type& prerequisite;
const target_type* member;
template <typename T>
bool
is_a () const
{
return member != nullptr
? member->is_a<T> () != nullptr
: prerequisite.is_a<T> ();
}
bool
is_a (const target_type_type& tt) const
{
return member != nullptr
? member->is_a (tt) != nullptr
: prerequisite.is_a (tt);
}
prerequisite_key
key () const
{
return member != nullptr
? prerequisite_key {prerequisite.proj, member->key (), nullptr}
: prerequisite.key ();
}
const target_type_type&
type () const
{
return member != nullptr ? member->type () : prerequisite.type;
}
const string&
name () const
{
return member != nullptr ? member->name : prerequisite.name;
}
const dir_path&
dir () const
{
return member != nullptr ? member->dir : prerequisite.dir;
}
const optional<project_name>&
proj () const
{
// Member cannot be project-qualified.
//
return member != nullptr ? nullopt_project_name : prerequisite.proj;
}
const scope_type&
scope () const
{
return member != nullptr ? member->base_scope () : prerequisite.scope;
}
const target_type&
search (const target_type& t) const
{
return member != nullptr ? *member : build2::search (t, prerequisite);
}
const target_type*
search_existing () const
{
return member != nullptr
? member
: build2::search_existing (prerequisite);
}
const target_type*
load (memory_order mo = memory_order_consume)
{
return member != nullptr ? member : prerequisite.target.load (mo);
}
// Return as a new prerequisite instance.
//
prerequisite_type
as_prerequisite () const;
};
// It is often stored as the target's auxiliary data so make sure there is
// no destructor overhead.
//
static_assert (std::is_trivially_destructible<prerequisite_member>::value,
"prerequisite_member is not trivially destructible");
inline ostream&
operator<< (ostream& os, const prerequisite_member& pm)
{
return os << pm.key ();
}
inline include_type
include (action a, const target& t, const prerequisite_member& pm)
{
return include (a, t, pm.prerequisite, pm.member);
}
// A "range" that presents a sequence of prerequisites (e.g., from
// group_prerequisites()) as a sequence of prerequisite_member's. For each
// group prerequisite you will "see" either the prerequisite itself or all
// its members, depending on the default iteration mode of the target group
// type (ad hoc groups are never implicitly see through since one can only
// safely access members after a synchronous match). You can skip the
// rest of the group members with leave_group() and you can force iteration
// over the members with enter_group(). Usage:
//
// for (prerequisite_member pm: prerequisite_members (a, ...))
//
// Where ... can be:
//
// t.prerequisites
// reverse_iterate(t.prerequisites)
// group_prerequisites (t)
// reverse_iterate (group_prerequisites (t))
//
// But use shortcuts instead:
//
// prerequisite_members (a, t)
// reverse_prerequisite_members (a, t)
// group_prerequisite_members (a, t)
// reverse_group_prerequisite_members (a, t)
//
template <typename R>
class prerequisite_members_range;
// See-through group members iteration mode. Ad hoc members must always
// be entered explicitly.
//
enum class members_mode
{
always, // Iterate over members, assert if not resolvable.
maybe, // Iterate over members if resolvable, group otherwise.
never // Iterate over group (can still use enter_group()).
};
template <typename R>
inline prerequisite_members_range<R>
prerequisite_members (action a, const target& t,
R&& r,
members_mode m = members_mode::always)
{
return prerequisite_members_range<R> (a, t, forward<R> (r), m);
}
template <typename R>
class prerequisite_members_range
{
public:
prerequisite_members_range (action a, const target& t,
R&& r,
members_mode m)
: a_ (a), t_ (t), mode_ (m), r_ (forward<R> (r)), e_ (r_.end ()) {}
using base_iterator = decltype (declval<R> ().begin ());
struct iterator
{
using value_type = prerequisite_member;
using pointer = const value_type*;
using reference = const value_type&;
using difference_type = typename base_iterator::difference_type;
using iterator_category = std::forward_iterator_tag;
iterator (): r_ (nullptr) {}
iterator (const prerequisite_members_range* r, const base_iterator& i)
: r_ (r), i_ (i), g_ {nullptr, 0}, k_ (nullptr)
{
if (r_->mode_ != members_mode::never &&
i_ != r_->e_ &&
i_->type.see_through)
switch_mode ();
}
iterator& operator++ ();
iterator operator++ (int) {iterator r (*this); operator++ (); return r;}
// Skip iterating over the rest of this group's members, if any. Note
// that the only valid operation after this call is to increment the
// iterator.
//
void
leave_group ();
// Iterate over this group's members. Return false if the member
// information is not available. Similar to leave_group(), you should
// increment the iterator after calling this function (provided it
// returned true).
//
bool
enter_group ();
// Return true if the next element is this group's members. Normally
// used to iterate over group members only, for example:
//
// for (...; ++i)
// {
// if (i->prerequisite.type.see_through)
// {
// for (i.enter_group (); i.group (); )
// {
// ++i;
// ...
// }
// }
// }
//
bool
group () const;
value_type operator* () const
{
const target* t (k_ != nullptr ? k_:
g_.count != 0 ? g_.members[j_ - 1] : nullptr);
return value_type {*i_, t};
}
pointer operator-> () const
{
static_assert (
std::is_trivially_destructible<value_type>::value,
"prerequisite_member is not trivially destructible");
const target* t (k_ != nullptr ? k_:
g_.count != 0 ? g_.members[j_ - 1] : nullptr);
return new (&m_) value_type {*i_, t};
}
friend bool
operator== (const iterator& x, const iterator& y)
{
return x.i_ == y.i_ &&
x.g_.count == y.g_.count &&
(x.g_.count == 0 || x.j_ == y.j_) &&
x.k_ == y.k_;
}
friend bool
operator!= (const iterator& x, const iterator& y) {return !(x == y);}
// What we have here is a state for three nested iteration modes (and
// no, I am not proud of it). The innermost mode is iteration over an ad
// hoc group (k_). Then we have iteration over a normal group (g_ and
// j_). Finally, at the outer level, we have the range itself (i_).
//
// Also, the enter/leave group support is full of ugly, special cases.
//
private:
void
switch_mode ();
private:
const prerequisite_members_range* r_;
base_iterator i_;
group_view g_;
size_t j_; // 1-based index, to support enter_group().
const target* k_; // Current member of ad hoc group or NULL.
mutable typename std::aligned_storage<sizeof (value_type),
alignof (value_type)>::type m_;
};
iterator
begin () const {return iterator (this, r_.begin ());}
iterator
end () const {return iterator (this, e_);}
private:
action a_;
const target& t_;
members_mode mode_;
R r_;
base_iterator e_;
};
// prerequisite_members(t.prerequisites)
//
inline auto
prerequisite_members (action a, target& t,
members_mode m = members_mode::always)
{
return prerequisite_members (a, t, t.prerequisites (), m);
}
inline auto
prerequisite_members (action a, const target& t,
members_mode m = members_mode::always)
{
return prerequisite_members (a, t, t.prerequisites (), m);
}
// prerequisite_members(reverse_iterate(t.prerequisites))
//
inline auto
reverse_prerequisite_members (action a, target& t,
members_mode m = members_mode::always)
{
return prerequisite_members (a, t, reverse_iterate (t.prerequisites ()), m);
}
inline auto
reverse_prerequisite_members (action a, const target& t,
members_mode m = members_mode::always)
{
return prerequisite_members (a, t, reverse_iterate (t.prerequisites ()), m);
}
// prerequisite_members(group_prerequisites (t))
//
inline auto
group_prerequisite_members (action a, target& t,
members_mode m = members_mode::always)
{
return prerequisite_members (a, t, group_prerequisites (t), m);
}
inline auto
group_prerequisite_members (action a, const target& t,
members_mode m = members_mode::always)
{
return prerequisite_members (a, t, group_prerequisites (t), m);
}
// prerequisite_members(reverse_iterate (group_prerequisites (t)))
//
inline auto
reverse_group_prerequisite_members (action a, target& t,
members_mode m = members_mode::always)
{
return prerequisite_members (
a, t, reverse_iterate (group_prerequisites (t)), m);
}
inline auto
reverse_group_prerequisite_members (action a, const target& t,
members_mode m = members_mode::always)
{
return prerequisite_members (
a, t, reverse_iterate (group_prerequisites (t)), m);
}
// A target with an unspecified extension is considered equal to the one
// with the specified one. And when we find a target with an unspecified
// extension via a key with the specified one, we update the extension,
// essentially modifying the map's key. To make this work we use a hash
// map. The key's hash ignores the extension, so the hash will stay stable
// across extension updates.
//
// Note also that once the extension is specified, it becomes immutable.
//
class target_set
{
public:
using map_type = std::unordered_map<target_key, unique_ptr<target>>;
// Return existing target or NULL.
//
const target*
find (const target_key& k, tracer& trace) const;
const target*
find (const target_type& type,
const dir_path& dir,
const dir_path& out,
const string& name,
const optional<string>& ext,
tracer& trace) const
{
return find (target_key {&type, &dir, &out, &name, ext}, trace);
}
template <typename T>
const T*
find (const target_type& type,
const dir_path& dir,
const dir_path& out,
const string& name,
const optional<string>& ext,
tracer& trace) const
{
return static_cast<const T*> (find (type, dir, out, name, ext, trace));
}
// As above but ignore the extension.
//
const target*
find (const target_type& type,
const dir_path& dir,
const dir_path& out,
const string& name) const
{
slock l (mutex_);
auto i (map_.find (target_key {&type, &dir, &out, &name, nullopt}));
return i != map_.end () ? i->second.get () : nullptr;
}
template <typename T>
const T*
find (const dir_path& dir, const dir_path& out, const string& name) const
{
return static_cast<const T*> (find (T::static_type, dir, out, name));
}
// If the target was inserted, keep the map exclusive-locked and return
// the lock. In this case, the target is effectively still being created
// since nobody can see it until the lock is released.
//
pair<target&, ulock>
insert_locked (const target_type&,
dir_path dir,
dir_path out,
string name,
optional<string> ext,
bool implied,
tracer&);
pair<target&, bool>
insert (const target_type& tt,
dir_path dir,
dir_path out,
string name,
optional<string> ext,
bool implied,
tracer& t)
{
auto p (insert_locked (tt,
move (dir),
move (out),
move (name),
move (ext),
implied,
t));
return pair<target&, bool> (p.first, p.second.owns_lock ());
}
// Note that the following versions always enter implied targets.
//
template <typename T>
T&
insert (const target_type& tt,
dir_path dir,
dir_path out,
string name,
optional<string> ext,
tracer& t)
{
return insert (tt,
move (dir),
move (out),
move (name),
move (ext),
true,
t).first.template as<T> ();
}
template <typename T>
T&
insert (const dir_path& dir,
const dir_path& out,
const string& name,
const optional<string>& ext,
tracer& t)
{
return insert<T> (T::static_type, dir, out, name, ext, t);
}
template <typename T>
T&
insert (const dir_path& dir,
const dir_path& out,
const string& name,
tracer& t)
{
return insert<T> (dir, out, name, nullopt, t);
}
// Note: not MT-safe so can only be used during serial execution.
//
public:
using iterator = butl::map_iterator_adapter<map_type::const_iterator>;
iterator begin () const {return map_.begin ();}
iterator end () const {return map_.end ();}
void
clear () {map_.clear ();}
private:
friend class target; // Access to mutex.
mutable shared_mutex mutex_;
map_type map_;
};
extern target_set targets;
// Modification time-based target.
//
class mtime_target: public target
{
public:
using target::target;
// Modification time is an "atomic cash". That is, it can be set at any
// time and we assume everything will be ok regardless of the order in
// which racing updates happen because we do not modify the external state
// (which is the source of timestemps) while updating the internal.
//
// The modification time is reserved for the inner operation thus there is
// no action argument.
//
// The rule for groups that utilize target_state::group is as follows: if
// it has any members that are mtime_targets, then the group should be
// mtime_target and the members get the mtime from it. During match and
// execute the target should be synchronized.
//
// Note that this function can be called before the target is matched in
// which case the value always comes from the target itself. In other
// words, that group logic only kicks in once the target is matched.
//
timestamp
mtime () const;
// Note also that while we can cache the mtime, it may be ignored if the
// target state is set to group (see above).
//
void
mtime (timestamp) const;
// If the mtime is unknown, then load it from the filesystem also caching
// the result.
//
// Note: can only be called during executing and must not be used if the
// target state is group.
//
timestamp
load_mtime (const path&) const;
// Return true if this target is newer than the specified timestamp.
//
// Note: can only be called during execute on a synchronized target.
//
bool
newer (timestamp) const;
public:
static const target_type static_type;
protected:
// Complain if timestamp is not lock-free unless we were told non-lock-
// free is ok.
//
#ifndef BUILD2_ATOMIC_NON_LOCK_FREE
// C++17:
//
// static_assert (atomic<timestamp::rep>::is_always_lock_free,
// "timestamp is not lock-free on this architecture");
//
#if !defined(ATOMIC_LLONG_LOCK_FREE) || ATOMIC_LLONG_LOCK_FREE != 2
# error timestamp is not lock-free on this architecture
#endif
#endif
// Note that the value is not used to synchronize any other state so we
// use the release-consume ordering (i.e., we are only interested in the
// mtime value being synchronized).
//
// Store it as an underlying representation (normally int64_t) since
// timestamp is not usable with atomic (non-noexcept default ctor).
//
mutable atomic<timestamp::rep> mtime_ {timestamp_unknown_rep};
};
// Filesystem path-based target.
//
class path_target: public mtime_target
{
public:
using mtime_target::mtime_target;
typedef build2::path path_type;
// Target path is an "atomic consistent cash". That is, it can be set at
// any time but any subsequent updates must set the same path. Or, in
// other words, once the path is set, it never changes.
//
// A set empty path may signify special unknown/undetermined/unreal
// location (for example, a binless library or an installed import library
// -- we know the DLL is there, just not exactly where). In this case you
// would also normally set its mtime. We used to return a pointer to
// properly distinguish between not set and empty but that proved too
// tedious. Note that this means there could be a race between path and
// mtime (unless you lock the target in some other way; see file_rule) so
// for this case it makes sense to set the timestamp first.
//
const path_type&
path () const;
const path_type&
path (path_type) const;
timestamp
load_mtime () const {return mtime_target::load_mtime (path ());}
// Derive a path from target's dir, name, and, if set, ext. If ext is not
// set, try to derive it using the target type extension function and
// fallback to default_ext, if specified. In both cases also update the
// target's extension (this becomes important if later we need to reliably
// determine whether this file has an extension; think hxx{foo.bar.} and
// hxx{*}:extension is empty).
//
// If name_prefix is not NULL, add it before the name part and after the
// directory. Similarly, if name_suffix is not NULL, add it after the name
// part and before the extension.
//
// Finally, if the path was already assigned to this target, then this
// function verifies that the two are the same.
//
const path_type&
derive_path (const char* default_ext = nullptr,
const char* name_prefix = nullptr,
const char* name_suffix = nullptr);
// This version can be used to derive the path from another target's path
// by adding another extension.
//
const path_type&
derive_path (path_type base, const char* default_ext = nullptr);
// As above but only derives (and returns) the extension (empty means no
// extension used).
//
const string&
derive_extension (const char* default_ext = nullptr)
{
return *derive_extension (false, default_ext);
}
// As above but if search is true then look for the extension as if it was
// a prerequisite, not a target. In this case, if no extension can be
// derived, return NULL instead of failing (like search_existing_file()).
//
const string*
derive_extension (bool search, const char* default_ext = nullptr);
// Const versions of the above that can be used on unlocked targets. Note
// that here we don't allow providing any defaults since you probably
// should only use this version if everything comes from the target itself
// (and is therefore atomic).
//
const path_type&
derive_path () const
{
return const_cast<path_target*> (this)->derive_path (); // MT-aware.
}
const string&
derive_extension () const
{
return const_cast<path_target*> (this)->derive_extension (); // MT-aware.
}
public:
static const target_type static_type;
private:
// Note that the state is also used to synchronize the path value so
// we use the release-acquire ordering.
//
// 0 - absent
// 1 - being set
// 2 - present
//
mutable atomic<uint8_t> path_state_ {0};
mutable path_type path_;
};
// File target.
//
class file: public path_target
{
public:
using path_target::path_target;
public:
static const target_type static_type;
virtual const target_type& dynamic_type () const {return static_type;}
};
// Alias target. It represents a list of targets (its prerequisites)
// as a single "name".
//
class alias: public target
{
public:
using target::target;
public:
static const target_type static_type;
virtual const target_type& dynamic_type () const {return static_type;}
};
// Directory target. Note that this is not a filesystem directory
// but rather an alias target with the directory name. For actual
// filesystem directory (creation), see fsdir.
//
class dir: public alias
{
public:
using alias::alias;
public:
static const target_type static_type;
virtual const target_type& dynamic_type () const {return static_type;}
public:
template <typename K>
static const target*
search_implied (const scope&, const K&, tracer&);
// Return true if the implied buildfile is plausible for the specified
// subdirectory of a project with the specified root scope. That is, there
// is a buildfile in at least one of its subdirectories. Note that the
// directory must exist.
//
static bool
check_implied (const scope& root, const dir_path&);
private:
static prerequisites_type
collect_implied (const scope&);
};
// While a filesystem directory is mtime-based, the semantics is not very
// useful in our case. In particular, if another target depends on fsdir{},
// then all that's desired is the creation of the directory if it doesn't
// already exist. In particular, we don't want to update the target just
// because some unrelated entry was created in that directory.
//
class fsdir: public target
{
public:
using target::target;
public:
static const target_type static_type;
virtual const target_type& dynamic_type () const {return static_type;}
};
// Executable file.
//
class exe: public file
{
public:
using file::file;
public:
static const target_type static_type;
virtual const target_type& dynamic_type () const {return static_type;}
};
class buildfile: public file
{
public:
using file::file;
public:
static const target_type static_type;
virtual const target_type& dynamic_type () const {return static_type;}
};
// Common documentation file targets.
//
class doc: public file
{
public:
using file::file;
public:
static const target_type static_type;
virtual const target_type& dynamic_type () const {return static_type;}
};
// The problem with man pages is this: different platforms have
// different sets of sections. What seems to be the "sane" set
// is 1-9 (Linux and BSDs). SysV (e.g., Solaris) instead maps
// 8 to 1M (system administration). The section determines two
// things: the directory where the page is installed (e.g.,
// /usr/share/man/man1) as well as the extension of the file
// (e.g., test.1). Note also that there could be sub-sections,
// e.g., 1p (for POSIX). Such a page would still go into man1
// but will have the .1p extension (at least that's what happens
// on Linux). The challenge is to somehow handle this in a
// portable manner. So here is the plan:
//
// First of all, we have the man{} target type which can be used
// for a custom man page. That is, you can have any extension and
// install it anywhere you please:
//
// man{foo.X}: install = man/manX
//
// Then we have man1..9{} target types which model the "sane"
// section set and that would be automatically installed into
// correct locations on other platforms. In other words, the
// idea is that you should be able to have the foo.8 file,
// write man8{foo} and have it installed as man1m/foo.1m on
// some SysV host.
//
// Re-mapping the installation directory is easy: to help with
// that we have assigned install.man1..9 directory names. The
// messy part is to change the extension. It seems the only
// way to do that would be to have special logic for man pages
// in the generic install rule. @@ This is still a TODO.
//
// Note that handling subsections with man1..9{} is easy, we
// simply specify the extension explicitly, e.g., man{foo.1p}.
//
class man: public doc
{
public:
using doc::doc;
public:
static const target_type static_type;
virtual const target_type& dynamic_type () const {return static_type;}
};
class man1: public man
{
public:
using man::man;
public:
static const target_type static_type;
virtual const target_type& dynamic_type () const {return static_type;}
};
// We derive manifest from doc rather than file so that it get automatically
// installed into the same place where the rest of the documentation goes.
// If you think about it, it's kind of a documentation, similar to (but
// better than) the version file that many projects come with.
//
class manifest: public doc
{
public:
using doc::doc;
public:
static const target_type static_type;
virtual const target_type& dynamic_type () const {return static_type;}
};
// Common implementation of the target factory, extension, and search
// functions.
//
template <typename T>
target*
target_factory (const target_type&, dir_path d, dir_path o, string n)
{
return new T (move (d), move (o), move (n));
}
// Return fixed target extension unless one was specified.
//
template <const char* ext>
const char*
target_extension_fix (const target_key&, const scope*);
template <const char* ext>
bool
target_pattern_fix (const target_type&, const scope&,
string&, optional<string>&, const location&,
bool);
// Get the extension from the variable or use the default if none set. If
// the default is NULL, then return NULL.
//
template <const char* var, const char* def>
optional<string>
target_extension_var (const target_key&, const scope&, const char*, bool);
template <const char* var, const char* def>
bool
target_pattern_var (const target_type&, const scope&,
string&, optional<string>&, const location&,
bool);
// Target print functions.
//
// Target type uses the extension but it is fixed and there is no use
// printing it (e.g., man1{}).
//
void
target_print_0_ext_verb (ostream&, const target_key&);
// Target type uses the extension and there is normally no default so it
// should be printed (e.g., file{}).
//
void
target_print_1_ext_verb (ostream&, const target_key&);
// The default behavior, that is, look for an existing target in the
// prerequisite's directory scope.
//
const target*
target_search (const target&, const prerequisite_key&);
// First look for an existing target as above. If not found, then look
// for an existing file in the target-type-specific list of paths.
//
const target*
file_search (const target&, const prerequisite_key&);
}
#include <build2/target.ixx>
#include <build2/target.txx>
#endif // BUILD2_TARGET_HXX
|