aboutsummaryrefslogtreecommitdiff
path: root/build2/target.ixx
blob: 30be02f91333ee74332c6b821c771c07403f59d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// file      : build2/target.ixx -*- C++ -*-
// copyright : Copyright (c) 2014-2019 Code Synthesis Ltd
// license   : MIT; see accompanying LICENSE file

#include <cstring> // memcpy()

#include <build2/filesystem.hxx> // mtime()

namespace build2
{
  // target
  //
  inline const string* target::
  ext () const
  {
    slock l (targets.mutex_);
    return *ext_ ? &**ext_ : nullptr;
  }

  inline target_key target::
  key () const
  {
    const string* e (ext ());
    return target_key {
      &type (),
      &dir,
      &out,
      &name,
      e != nullptr ? optional<string> (*e) : nullopt};
  }

  inline auto target::
  prerequisites () const -> const prerequisites_type&
  {
    return prerequisites_state_.load (memory_order_acquire) == 2
      ? prerequisites_
      : empty_prerequisites_;
  }

  inline bool target::
  prerequisites (prerequisites_type&& p) const
  {
    target& x (const_cast<target&> (*this)); // MT-aware.

    uint8_t e (0);
    if (x.prerequisites_state_.compare_exchange_strong (
          e,
          1,
          memory_order_acq_rel,
          memory_order_acquire))
    {
      x.prerequisites_ = move (p);
      x.prerequisites_state_.fetch_add (1, memory_order_release);
      return true;
    }
    else
    {
      // Spin the transition out so that prerequisites() doesn't return empty.
      //
      for (; e == 1; e = prerequisites_state_.load (memory_order_acquire))
        /*this_thread::yield ()*/ ;

      return false;
    }
  }

  inline pair<bool, target_state> target::
  matched_state_impl (action a) const
  {
    assert (phase == run_phase::match);

    // Note that the "tried" state is "final".
    //
    const opstate& s (state[a]);
    size_t o (s.task_count.load (memory_order_relaxed) - // Synchronized.
              target::count_base ());

    if (o == target::offset_tried)
      return make_pair (false, target_state::unknown);
    else
    {
      // Normally applied but can also be already executed.
      //
      assert (o == target::offset_applied || o == target::offset_executed);
      return make_pair (true, (group_state (a) ? group->state[a] : s).state);
    }
  }

  inline target_state target::
  executed_state_impl (action a) const
  {
    assert (phase == run_phase::execute);
    return (group_state (a) ? group->state : state)[a].state;
  }

  inline bool target::
  group_state (action a) const
  {
    // We go an extra step and short-circuit to the target state even if the
    // raw state is not group provided the recipe is group_recipe and the
    // state is unknown (see mtime() for a discussion on why we do it).
    //
    const opstate& s (state[a]);

    if (s.state == target_state::group)
      return true;

    if (s.state == target_state::unknown && group != nullptr)
    {
      if (recipe_function* const* f = s.recipe.target<recipe_function*> ())
        return *f == &group_action;
    }

    return false;
  }

  inline target_state target::
  matched_state (action a, bool fail) const
  {
    // Note that the target could be being asynchronously re-matched.
    //
    pair<bool, target_state> r (matched_state_impl (a));

    if (fail && (!r.first || r.second == target_state::failed))
      throw failed ();

    return r.second;
  }

  inline pair<bool, target_state> target::
  try_matched_state (action a, bool fail) const
  {
    pair<bool, target_state> r (matched_state_impl (a));

    if (fail && r.first && r.second == target_state::failed)
      throw failed ();

    return r;
  }

  inline target_state target::
  executed_state (action a, bool fail) const
  {
    target_state r (executed_state_impl (a));

    if (fail && r == target_state::failed)
      throw failed ();

    return r;
  }

  // mark()/unmark()
  //

  // VC15 doesn't like if we use (abstract) target here.
  //
  static_assert (alignof (file) % 4 == 0, "unexpected target alignment");

  inline void
  mark (const target*& p, uint8_t m)
  {
    uintptr_t i (reinterpret_cast<uintptr_t> (p));
    i |= m & 0x03;
    p = reinterpret_cast<const target*> (i);
  }

  inline uint8_t
  marked (const target* p)
  {
    uintptr_t i (reinterpret_cast<uintptr_t> (p));
    return uint8_t (i & 0x03);
  }

  inline uint8_t
  unmark (const target*& p)
  {
    uintptr_t i (reinterpret_cast<uintptr_t> (p));
    uint8_t m (i & 0x03);

    if (m != 0)
    {
      i &= ~uintptr_t (0x03);
      p = reinterpret_cast<const target*> (i);
    }

    return m;
  }

  // prerequisite_member
  //
  inline prerequisite prerequisite_member::
  as_prerequisite () const
  {
    if (member == nullptr)
      return prerequisite;

    // An ad hoc group member cannot be used as a prerequisite (use the whole
    // group instead).
    //
    assert (!member->adhoc_member ());

    return prerequisite_type (*member);
  }

  // prerequisite_members
  //
  group_view
  resolve_members (action, const target&); // algorithm.hxx

  template <typename T>
  inline auto prerequisite_members_range<T>::iterator::
  operator++ () -> iterator&
  {
    if (k_ != nullptr) // Iterating over an ad hoc group.
      k_ = k_->member;

    if (k_ == nullptr && g_.count != 0) // Iterating over a normal group.
    {
      if (g_.members == nullptr || // Special case, see leave_group().
          ++j_ > g_.count)
        g_.count = 0;
    }

    if (k_ == nullptr && g_.count == 0) // Iterating over the range.
    {
      ++i_;

      if (r_->mode_ != members_mode::never &&
          i_ != r_->e_                     &&
          i_->type.see_through)
        switch_mode ();
    }

    return *this;
  }

  template <typename T>
  inline bool prerequisite_members_range<T>::iterator::
  enter_group ()
  {
    assert (k_ == nullptr); // No nested ad hoc group entering.

    // First see if we are about to enter an ad hoc group.
    //
    const target* t (g_.count != 0
                     ? j_ != 0 ? g_.members[j_ - 1] : nullptr
                     : i_->target.load (memory_order_consume));

    if (t != nullptr && t->member != nullptr)
      k_ = t; // Increment that follows will make it t->member.
    else
    {
      // Otherwise assume it is a normal group.
      //
      g_ = resolve_members (r_->a_, search (r_->t_, *i_));

      if (g_.members == nullptr) // Members are not know.
      {
        g_.count = 0;
        return false;
      }

      if (g_.count != 0) // Group is not empty.
        j_ = 0; // Account for the increment that will follow.
    }

    return true;
  }

  template <typename T>
  inline void prerequisite_members_range<T>::iterator::
  leave_group ()
  {
    if (k_ != nullptr)
    {
      // Skip until the last element (next increment will reach the end).
      //
      for (; k_->member != nullptr; k_ = k_->member) ;
    }
    else
    {
      // Pretend we are on the last member of a normal group.
      //
      j_ = 0;
      g_.count = 1;
      g_.members = nullptr; // Ugly "special case signal" for operator++.
    }
  }

  template <typename T>
  inline bool prerequisite_members_range<T>::iterator::
  group () const
  {
    return
      k_ != nullptr ? k_->member != nullptr                  : /* ad hoc   */
      g_.count != 0 ? g_.members != nullptr && j_ < g_.count : /* explicit */
      false;
  }

  // mtime_target
  //
  inline void mtime_target::
  mtime (timestamp mt) const
  {
    mtime_.store (mt.time_since_epoch ().count (), memory_order_release);
  }

  inline timestamp mtime_target::
  load_mtime (const path& p) const
  {
    assert (phase == run_phase::execute &&
            !group_state (action () /* inner */));

    duration::rep r (mtime_.load (memory_order_consume));
    if (r == timestamp_unknown_rep)
    {
      assert (!p.empty ());

      r = build2::mtime (p).time_since_epoch ().count ();
      mtime_.store (r, memory_order_release);
    }

    return timestamp (duration (r));
  }

  inline bool mtime_target::
  newer (timestamp mt) const
  {
    assert (phase == run_phase::execute);

    timestamp mp (mtime ());

    // What do we do if timestamps are equal? This can happen, for example,
    // on filesystems that don't have subsecond resolution. There is not
    // much we can do here except detect the case where the target was
    // changed on this run.
    //
    return mt < mp || (mt == mp &&
                       executed_state_impl (action () /* inner */) ==
                       target_state::changed);
  }

  // path_target
  //
  inline const path& path_target::
  path () const
  {
    return path_state_.load (memory_order_acquire) == 2 ? path_ : empty_path;
  }

  inline const path& path_target::
  path (path_type p) const
  {
    uint8_t e (0);
    if (path_state_.compare_exchange_strong (
          e,
          1,
          memory_order_acq_rel,
          memory_order_acquire))
    {
      path_ = move (p);
      path_state_.fetch_add (1, memory_order_release);
    }
    else
    {
      // Spin the transition out.
      //
      for (; e == 1; e = path_state_.load (memory_order_acquire))
        /*this_thread::yield ()*/ ;

      assert (path_ == p);
    }

    return path_;
  }
}