aboutsummaryrefslogtreecommitdiff
path: root/build2/target.ixx
blob: 68a683a45bddc7f3331076e47496ae0e02ec6164 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// file      : build2/target.ixx -*- C++ -*-
// copyright : Copyright (c) 2014-2017 Code Synthesis Ltd
// license   : MIT; see accompanying LICENSE file

namespace build2
{
  // target
  //
  inline const string* target::
  ext () const
  {
    slock l (targets.mutex_);
    return *ext_ ? &**ext_ : nullptr;
  }

  inline target_key target::
  key () const
  {
    const string* e (ext ());
    return target_key {
      &type (),
      &dir,
      &out,
      &name,
      e != nullptr ? optional<string> (*e) : nullopt};
  }

  inline target_state target::
  atomic_state () const
  {
    switch (task_count)
    {
    case target::count_unexecuted: return target_state::unknown;
    case target::count_postponed:  return target_state::postponed;
    case target::count_executed:   return synchronized_state ();
    default:                       return target_state::busy;
    }
  }

  inline target_state target::
  synchronized_state () const
  {
    // We go an extra step and short-circuit to the target state even if the
    // raw state is not group provided the recipe is group_recipe.

    if (state_ == target_state::group)
      return group->state_;

    if (group == nullptr)
      return state_;

    if (recipe_function* const* f = recipe_.target<recipe_function*> ())
    {
      if (*f == &group_action)
        return group->state_;
    }

    return state_;
  }

  // prerequisite_member
  //
  inline prerequisite prerequisite_member::
  as_prerequisite () const
  {
    if (target == nullptr)
      return prerequisite;

    // An ad hoc group member cannot be used as a prerequisite (use the whole
    // group instead).
    //
    assert (!target->adhoc_member ());

    return prerequisite_type (*target);
  }

  // prerequisite_members
  //
  group_view
  resolve_group_members (slock&, action, target&); // <build2/algorithm>

  template <typename T>
  inline auto prerequisite_members_range<T>::iterator::
  operator++ () -> iterator&
  {
    if (k_ != nullptr) // Iterating over an ad hoc group.
      k_ = k_->member;
    else if (r_->members_)
    {
      // Get the target if one has been resolved and see if it's an ad hoc
      // group. If so, switch to the ad hoc mode.
      //
      target* t (g_.count != 0
                 ? j_ != 0 ? g_.members[j_ - 1] : nullptr // enter_group()
                 : i_->target);
      if (t != nullptr && t->member != nullptr)
        k_ = t->member;
    }

    if (k_ == nullptr && g_.count != 0) // Iterating over a normal group.
    {
      if (g_.members == nullptr || // leave_group()
          ++j_ > g_.count)
        g_.count = 0;
    }

    if (k_ == nullptr && g_.count == 0) // Iterating over the range.
    {
      ++i_;

      if (r_->members_ && i_ != r_->e_ && i_->type.see_through)
        switch_mode ();
    }

    return *this;
  }

  template <typename T>
  inline bool prerequisite_members_range<T>::iterator::
  enter_group ()
  {
    // First see if we are about to enter an ad hoc group (the same code as in
    // operator++() above).
    //
    target* t (g_.count != 0
               ? j_ != 0 ? g_.members[j_ - 1] : nullptr
               : i_->target);

    if (t != nullptr && t->member != nullptr)
      k_ = t->member;
    else
    {
      // Otherwise assume it is a normal group.
      //
      g_ = resolve_group_members (r_->l_, r_->a_, search (*i_));

      if (g_.members == nullptr) // Members are not know.
      {
        g_.count = 0;
        return false;
      }

      if (g_.count != 0) // Group is not empty.
        j_ = 0; // Account for the increment that will follow.
    }


    return true;
  }

  template <typename T>
  inline void prerequisite_members_range<T>::iterator::
  leave_group ()
  {
    // First see if we are about to enter an ad hoc group (the same code as in
    // operator++() above).
    //
    if (k_ == nullptr)
    {
      target* t (g_.count != 0
                 ? j_ != 0 ? g_.members[j_ - 1] : nullptr
                 : i_->target);
      if (t != nullptr && t->member != nullptr)
        k_ = t->member;
    }

    if (k_ != nullptr)
    {
      // Skip until the last element (next increment will reach the end).
      //
      for (; k_->member != nullptr; k_ = k_->member) ;
    }
    else
    {
      // Pretend we are on the last member of a normal group.
      //
      j_ = 0;
      g_.count = 1;
      g_.members = nullptr; // Ugly "special case signal" for operator++.
    }
  }
}