aboutsummaryrefslogtreecommitdiff
path: root/build2/test/rule.cxx
blob: ccbf93248d3d5b90abe56c233d23d9fc01d2f4d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
// file      : build2/test/rule.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2017 Code Synthesis Ltd
// license   : MIT; see accompanying LICENSE file

#include <build2/test/rule>

#include <build2/scope>
#include <build2/target>
#include <build2/algorithm>
#include <build2/filesystem>
#include <build2/diagnostics>

#include <build2/test/target>

#include <build2/test/script/parser>
#include <build2/test/script/runner>
#include <build2/test/script/script>

using namespace std;
using namespace butl;

namespace build2
{
  namespace test
  {
    struct match_data
    {
      bool test = false;
      bool script = false;
    };

    static_assert (sizeof (match_data) <= target::data_size,
                   "insufficient space");

    match_result rule::
    match (action a, target& t, const string&) const
    {
      // The (admittedly twisted) logic of this rule tries to achieve the
      // following: If the target is testable, then we want both first update
      // it and then test it. Otherwise, we want to ignore it for both
      // operations. To achieve this the rule will be called to match during
      // both operations. For update, if the target is not testable, then the
      // rule matches with a noop recipe. If the target is testable, then the
      // rule also matches but delegates to the real update rule. In this case
      // (and this is tricky) the rule also changes the operation to
      // unconditional update to make sure it doesn't match any prerequisites
      // (which, if not testable, it will noop).
      //
      // And to add a bit more complexity, we want to handle aliases slightly
      // differently: we don't want to ignore their prerequisites if the alias
      // is not testable since their prerequisites could be.

      match_data md;

      // We have two very different cases: testscript and simple test (plus it
      // may not be a testable target at all). So as the first step determine
      // which case this is.
      //
      // If we have any prerequisites of the test{} type, then this is the
      // testscript case.
      //
      for (prerequisite_member p: group_prerequisite_members (a, t))
      {
        if (p.is_a<testscript> ())
        {
          md.script = true;

          // We treat this target as testable unless the test variable is
          // explicitly set to false.
          //
          const name* n (cast_null<name> (t["test"]));
          md.test = n == nullptr || !n->simple () || n->value != "false";
          break;
        }
      }

      // If this is not a script, then determine if it is a simple test.
      // Ignore aliases and testscripts files themselves at the outset.
      //
      if (!md.script && !t.is_a<alias> () && !t.is_a<testscript> ())
      {
        // For the simple case whether this is a test is controlled by the
        // test variable. Also, it feels redundant to specify, say, "test =
        // true" and "test.output = test.out" -- the latter already says this
        // is a test.
        //

        // Use lookup depths to figure out who "overrides" whom.
        //
        auto p (t.find ("test"));
        const name* n (cast_null<name> (p.first));

        if (n != nullptr && n->simple () && n->value != "false")
          md.test = true;
        else
        {
          auto test = [&t, &p] (const char* var)
          {
            return t.find (var).second < p.second;
          };

          md.test =
            test ("test.input")     ||
            test ("test.output")    ||
            test ("test.roundtrip") ||
            test ("test.options")   ||
            test ("test.arguments");
        }
      }

      match_result mr (true);

      // Theoretically if this target is testable and this is the update
      // pre-operation, then all we need to do is say we are not a match and
      // the standard matching machinery will find the rule to update this
      // target. The problem with this approach is that the matching will
      // still happen for "update for test" which means this rule may still
      // match prerequisites (e.g., non-existent files) which we don't want.
      //
      // Also, for the simple case there is one more complication: test
      // input/output. While normally they will be existing (in src_base)
      // files, they could also be auto-generated. In fact, they could only be
      // needed for testing, which means the normall update won't even know
      // about them (nor clean, for that matter; this is why we need
      // cleantest).
      //
      // @@ Maybe we should just say if input/output are generated, then they
      //    must be explicitly listed as prerequisites? Then no need for
      //    cleantest but they will be updated even when not needed.
      //
      // To make generated input/output work we will have to cause their
      // update ourselves. In other words, we may have to do some actual work
      // for (update, test), and not simply "guide" (update, 0) as to which
      // targets need updating. For how exactly we are going to do it, see
      // apply() below.
      //
      // Change the recipe action to (update, 0) (i.e., "unconditional
      // update") to make sure we won't match any prerequisites.
      //
      if (md.test && a.operation () == update_id)
        mr.recipe_action = action (a.meta_operation (), update_id);

      // Note that we match even if this target is not testable so that we can
      // ignore it (see apply()).
      //
      t.data (md); // Save the data in the target's auxilary storage.
      return mr;
    }

    recipe alias_rule::
    apply (action a, target& t) const
    {
      match_data md (move (t.data<match_data> ()));
      t.clear_data (); // In case delegated-to rule also uses aux storage.

      // We can only test an alias via a testscript, not a simple test.
      //
      assert (!md.test || md.script);

      // If this is the update pre-operation then simply redirect to the
      // standard alias rule.
      //
      if (a.operation () == update_id)
        return match_delegate (a, t, *this).first;

      // For the test operation we have to implement our own search and match
      // because we need to ignore prerequisites that are outside of our
      // project. They can be from projects that don't use the test module
      // (and thus won't have a suitable rule). Or they can be from no project
      // at all (e.g., installed). Also, generally, not testing stuff that's
      // not ours seems right. Note that we still want to make sure they are
      // up to date (via the above delegate) since our tests might use them.
      //
      search_and_match_prerequisites (a, t, t.root_scope ());

      // If not a test then also redirect to the alias rule.
      //
      return md.test ? perform_test : default_recipe;
    }

    recipe rule::
    apply (action a, target& t) const
    {
      tracer trace ("test::rule::apply");

      match_data md (move (t.data<match_data> ()));
      t.clear_data (); // In case delegated-to rule also uses aux storage.

      if (!md.test)
        return noop_recipe;

      // If we are here, then the target is testable and the action is either
      //   a. (perform, test, 0) or
      //   b. (*, update, 0)
      //
      if (md.script)
      {
        if (a.operation () == update_id)
          return match_delegate (a, t, *this).first;

        // Collect all the testscript targets in prerequisite_targets.
        //
        for (prerequisite_member p: group_prerequisite_members (a, t))
        {
          if (p.is_a<testscript> ())
            t.prerequisite_targets.push_back (&p.search ());
        }

        return &perform_script;
      }
      else
      {
        // In both cases, the next step is to see if we have test.{input,
        // output,roundtrip}.
        //

        // We should have either arguments or input/roundtrip. Again, use
        // lookup depth to figure out who takes precedence.
        //
        auto ip (t.find ("test.input"));
        auto op (t.find ("test.output"));
        auto rp (t.find ("test.roundtrip"));
        auto ap (t.find ("test.arguments"));

        auto test = [&t] (pair<lookup, size_t>& x, const char* xn,
                          pair<lookup, size_t>& y, const char* yn)
        {
          if (x.first && y.first)
          {
            if (x.second == y.second)
              fail << "both " << xn << " and " << yn << " specified for "
                   << "target " << t;

            (x.second < y.second ? y : x) = make_pair (lookup (), size_t (~0));
          }
        };

        test (ip, "test.input",     ap, "test.arguments");
        test (rp, "test.roundtrip", ap, "test.arguments");
        test (ip, "test.input",     rp, "test.roundtrip");
        test (op, "test.output",    rp, "test.roundtrip");

        const name* in;
        const name* on;

        // Reduce the roundtrip case to input/output.
        //
        if (rp.first)
        {
          in = on = &cast<name> (rp.first);
        }
        else
        {
          in = ip.first ? &cast<name> (ip.first) : nullptr;
          on = op.first ? &cast<name> (op.first) : nullptr;
        }

        // Resolve them to targets, which normally would be existing files
        // but could also be targets that need updating.
        //
        scope& bs (t.base_scope ());

        // @@ OUT: what if this is a @-qualified pair or names?
        //
        target* it (in != nullptr ? &search (*in, bs) : nullptr);
        target* ot (on != nullptr
                    ? in == on ? it : &search (*on, bs)
                    : nullptr);

        if (a.operation () == update_id)
        {
          // First see if input/output are existing, up-to-date files. This
          // is a common case optimization.
          //
          if (it != nullptr)
          {
            build2::match (a, *it);

            if (it->state () == target_state::unchanged)
            {
              unmatch (a, *it);
              it = nullptr;
            }
          }

          if (ot != nullptr)
          {
            if (in != on)
            {
              build2::match (a, *ot);

              if (ot->state () == target_state::unchanged)
              {
                unmatch (a, *ot);
                ot = nullptr;
              }
            }
            else
              ot = it;
          }

          // Find the "real" update rule, that is, the rule that would have
          // been found if we signalled that we do not match from match()
          // above.
          //
          recipe d (match_delegate (a, t, *this).first);

          // If we have no input/output that needs updating, then simply
          // redirect to it.
          //
          if (it == nullptr && ot == nullptr)
            return d;

          // Ok, time to handle the worst case scenario: we need to cause
          // update of input/output targets and also delegate to the real
          // update.
          //
          return [it, ot, dr = move (d)] (action a, target& t) -> target_state
          {
            // Do the general update first.
            //
            target_state r (execute_delegate (dr, a, t));

            if (it != nullptr)
              r |= execute (a, *it);

            if (ot != nullptr)
              r |= execute (a, *ot);

            return r;
          };
        }
        else
        {
          // Cache the targets in our prerequsite targets lists where they can
          // be found by perform_test(). If we have either or both, then the
          // first entry is input and the second -- output (either can be
          // NULL).
          //
          if (it != nullptr || ot != nullptr)
          {
            auto& pts (t.prerequisite_targets);
            pts.resize (2, nullptr);
            pts[0] = it;
            pts[1] = ot;
          }

          return &perform_test;
        }
      }
    }

    target_state rule::
    perform_script (action, target& t)
    {
      // Figure out whether the testscript file is called 'testscript', in
      // which case it should be the only one.
      //
      optional<bool> one;
      for (target* pt: t.prerequisite_targets)
      {
        // In case we are using the alias rule's list (see above).
        //
        if (testscript* ts = pt->is_a<testscript> ())
        {
          bool r (ts->name == "testscript");

          if ((r && one) || (!r && one && *one))
            fail << "both 'testscript' and other names specified for " << t;

          one = r;
        }
      }

      assert (one); // We should have a testscript or we wouldn't be here.

      // Calculate root working directory. It is in the out_base of the target
      // and is called just test for dir{} targets and test-<target-name> for
      // other targets.
      //
      dir_path wd (t.out_dir ());

      if (t.is_a<dir> ())
        wd /= "test";
      else
        wd /= "test-" + t.name;

      // If this is a (potentially) multi-testscript test, then create (and
      // later cleanup) the root directory. If this is just 'testscript', then
      // the root directory is used directly as test's working directory and
      // it's the runner's responsibility to create and clean it up.
      //
      // What should we do if the directory already exists? We used to fail
      // which meant the user had to go and clean things up manually every
      // time a test failed. This turned out to be really annoying. So now we
      // issue a warning and clean it up automatically. The drawbacks of this
      // approach are the potential loss of data from the previous failed test
      // run and the possibility of deleting user-created files.
      //
      if (exists (static_cast<const path&> (wd), false))
        fail << "working directory " << wd << " is a file/symlink";

      if (exists (wd))
      {
        bool e (empty (wd));

        warn << "working directory " << wd << " exists "
             << (e ? "" : "and is not empty ") << "at the beginning "
             << "of the test";

        if (!e)
          build2::rmdir_r (wd, false, 2);
      }
      else if (!*one)
        mkdir (wd, 2);

      // Run all the testscripts.
      //
      auto run = [&t, &wd] (testscript& ts)
      {
        if (verb)
        {
          const auto& tt (cast<target_triplet> (t["test.target"]));
          text << "test " << t << " with " << ts << " on " << tt;
        }

        script::parser p;
        script::script s (t, ts, wd);
        p.pre_parse (s);

        script::default_runner r;
        p.execute (s, r);
      };

      for (target* pt: t.prerequisite_targets)
      {
        if (testscript* ts = pt->is_a<testscript> ())
          run (*ts);
      }

      // Cleanup.
      //
      if (!*one)
      {
        if (!empty (wd))
          fail << "working directory " << wd << " is not empty at the "
               << "end of the test";

        rmdir (wd, 2);
      }

      return target_state::changed;
    }

    // The format of args shall be:
    //
    // name1 arg arg ... nullptr
    // name2 arg arg ... nullptr
    // ...
    // nameN arg arg ... nullptr nullptr
    //
    static bool
    run_test (target& t,
              diag_record& dr,
              char const** args,
              process* prev = nullptr)
    {
      // Find the next process, if any.
      //
      char const** next (args);
      for (next++; *next != nullptr; next++) ;
      next++;

      // Redirect stdout to a pipe unless we are last, in which
      // case redirect it to stderr.
      //
      int out (*next == nullptr ? 2 : -1);
      bool pr, wr;

      try
      {
        if (prev == nullptr)
        {
          // First process.
          //
          process p (args, 0, out);
          pr = *next == nullptr || run_test (t, dr, next, &p);
          wr = p.wait ();
        }
        else
        {
          // Next process.
          //
          process p (args, *prev, out);
          pr = *next == nullptr || run_test (t, dr, next, &p);
          wr = p.wait ();
        }
      }
      catch (const process_error& e)
      {
        error << "unable to execute " << args[0] << ": " << e.what ();

        if (e.child ())
          exit (1);

        throw failed ();
      }

      if (!wr)
      {
        if (pr) // First failure?
          dr << fail << "test " << t << " failed"; // Multi test: test 1.

        dr << error << "non-zero exit status: ";
        print_process (dr, args);
      }

      return pr && wr;
    }

    target_state rule::
    perform_test (action, target& t)
    {
      // @@ Would be nice to print what signal/core was dumped.
      //
      // @@ Doesn't have to be a file target if we have test.cmd (or
      //    just use test which is now path).
      //

      file& ft (static_cast<file&> (t));
      assert (!ft.path ().empty ()); // Should have been assigned by update.

      process_path fpp (run_search (ft.path (), true));
      cstrings args {fpp.recall_string ()};

      // Do we have options?
      //
      if (auto l = t["test.options"])
        append_options (args, cast<strings> (l));

      // Do we have input?
      //
      auto& pts (t.prerequisite_targets);
      if (pts.size () != 0 && pts[0] != nullptr)
      {
        file& it (static_cast<file&> (*pts[0]));
        assert (!it.path ().empty ()); // Should have been assigned by update.
        args.push_back (it.path ().string ().c_str ());
      }
      // Maybe arguments then?
      //
      else
      {
        if (auto l = t["test.arguments"])
          append_options (args, cast<strings> (l));
      }

      args.push_back (nullptr);

      // Do we have output?
      //
      path dp ("diff");
      process_path dpp;
      if (pts.size () != 0 && pts[1] != nullptr)
      {
        file& ot (static_cast<file&> (*pts[1]));
        assert (!ot.path ().empty ()); // Should have been assigned by update.

        dpp = run_search (dp, true);

        args.push_back (dpp.recall_string ());
        args.push_back ("--strip-trailing-cr"); //@@ TMP: see init.cxx
        args.push_back ("-u");
        args.push_back (ot.path ().string ().c_str ());
        args.push_back ("-");
        args.push_back (nullptr);
      }

      args.push_back (nullptr); // Second.

      if (verb >= 2)
        print_process (args);
      else if (verb)
        text << "test " << t;

      diag_record dr;
      if (!run_test (t, dr, args.data ()))
      {
        dr << info << "test command line: ";
        print_process (dr, args);
        dr << endf; // return
      }

      return target_state::changed;
    }

    target_state alias_rule::
    perform_test (action a, target& t)
    {
      // Run the alias recipe first then the test.
      //
      target_state r (execute_prerequisites (a, t));

      // Note that we reuse the prerequisite_targets prepared by the standard
      // search and match.
      //
      return r |= perform_script (a, t);
    }
  }
}