1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
|
// file : build2/variable.hxx -*- C++ -*-
// copyright : Copyright (c) 2014-2018 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#ifndef BUILD2_VARIABLE_HXX
#define BUILD2_VARIABLE_HXX
#include <map>
#include <set>
#include <type_traits> // aligned_storage
#include <unordered_map>
#include <libbutl/prefix-map.mxx>
#include <libbutl/multi-index.mxx> // map_key
#include <build2/types.hxx>
#include <build2/utility.hxx>
#include <build2/target-type.hxx>
namespace build2
{
// Some general variable infrastructure rules:
//
// 1. A variable can only be entered or typified during the load phase.
//
// 2. Any entity (module) that caches a variable value must make sure the
// variable has already been typified.
//
// 3. Any entity (module) that assigns a target-specific variable value
// during a phase other than load must make sure the variable has already
// been typified.
class value;
struct variable;
struct lookup;
struct value_type
{
const char* name; // Type name for diagnostics.
const size_t size; // Type size in value::data_ (only used for PODs).
// Base type, if any. We have very limited support for inheritance: a
// value can be cast to the base type. In particular, a derived/base value
// cannot be assigned to base/derived. If not NULL, then the cast function
// below is expected to return the base pointer if its second argument
// points to the base's value_type.
//
const value_type* base_type;
// Element type, if this is a vector.
//
const value_type* element_type;
// Destroy the value. If it is NULL, then the type is assumed to be POD
// with a trivial destructor.
//
void (*const dtor) (value&);
// Copy/move constructor and copy/move assignment for data_. If NULL, then
// assume the stored data is POD. If move is true then the second argument
// can be const_cast and moved from. copy_assign() is only called with
// non-NULL first argument.
//
void (*const copy_ctor) (value&, const value&, bool move);
void (*const copy_assign) (value&, const value&, bool move);
// While assign cannot be NULL, if append or prepend is NULL, then this
// means this type doesn't support this operation. Variable is optional
// and is provided only for diagnostics. Return true if the resulting
// value is not empty.
//
void (*const assign) (value&, names&&, const variable*);
void (*const append) (value&, names&&, const variable*);
void (*const prepend) (value&, names&&, const variable*);
// Reverse the value back to a vector of names. Storage can be used by the
// implementation if necessary. Cannot be NULL.
//
names_view (*const reverse) (const value&, names& storage);
// Cast value::data_ storage to value type so that the result can be
// static_cast to const T*. If it is NULL, then cast data_ directly. Note
// that this function is used for both const and non-const values.
//
const void* (*const cast) (const value&, const value_type*);
// If NULL, then the types are compared as PODs using memcmp().
//
int (*const compare) (const value&, const value&);
// If NULL, then the value is never empty.
//
bool (*const empty) (const value&);
};
// The order of the enumerators is arranged so that their integral values
// indicate whether one is more restrictive than the other.
//
enum class variable_visibility: uint8_t
{
// Note that the search for target type/pattern-specific terminates at
// the project boundary.
//
normal, // All outer scopes.
project, // This project (no outer projects).
scope, // This scope (no outer scopes).
target, // Target and target type/pattern-specific.
prereq // Prerequisite-specific.
};
inline bool
operator> (variable_visibility l, variable_visibility r)
{
return static_cast<uint8_t> (l) > static_cast<uint8_t> (r);
}
inline bool
operator>= (variable_visibility l, variable_visibility r)
{
return static_cast<uint8_t> (l) >= static_cast<uint8_t> (r);
}
inline bool
operator< (variable_visibility l, variable_visibility r)
{
return r > l;
}
inline bool
operator<= (variable_visibility l, variable_visibility r)
{
return r >= l;
}
ostream&
operator<< (ostream&, variable_visibility);
// variable
//
// The two variables are considered the same if they have the same name.
//
// Variables can be aliases of each other in which case they form a circular
// linked list (alias for variable without any aliases points to the
// variable itself).
//
// If the variable is overridden on the command line, then override is the
// chain of the special override variables. Their names are derived from the
// main variable name as <name>.{__override,__prefix,__suffix} and they are
// not entered into the var_pool. The override variables only vary in their
// names and visibility. Their alias pointer is always NULL.
//
// Note also that we don't propagate the variable type to override variables
// and we keep override values as untyped names. They get "typed" when they
// are applied.
//
// We use the "modify original, override on query" model. Because of that, a
// modified value does not necessarily represent the actual value so care
// must be taken to re-query after (direct) modification. And because of
// that, variables set by the C++ code are by default non-overridable.
//
// Initial processing including entering of global overrides happens in
// reset() before any other variables. Project wide overrides are entered in
// main(). Overriding happens in scope::find_override().
//
// NULL type and normal visibility are the defaults and can be overridden by
// "tighter" values.
//
struct variable
{
string name;
const variable* alias; // Circular linked list.
const value_type* type; // If NULL, then not (yet) typed.
unique_ptr<const variable> override;
variable_visibility visibility;
// Return true if this variable is an alias of the specified variable.
//
bool
aliases (const variable& var) const
{
const variable* v (alias);
for (; v != &var && v != this; v = v->alias) ;
return v == &var;
}
};
inline bool
operator== (const variable& x, const variable& y) {return x.name == y.name;}
inline ostream&
operator<< (ostream& os, const variable& v) {return os << v.name;}
//
//
class value
{
public:
// NULL means this value is not (yet) typed.
//
// Atomic access is used to implement on-first-access typification of
// values store in variable_map. Direct access as well as other functions
// that operate on values directly all use non-atomic access.
//
relaxed_atomic<const value_type*> type;
// True if there is no value.
//
bool null;
// Extra data that is associated with the value that can be used to store
// flags, etc. It is initialized to 0 and copied (but not assigned) from
// one value to another but is otherwise untouched (not even when the
// value is reset to NULL).
//
// Note: if deciding to use for something make sure it is not overlapping
// with an existing usage.
//
uint16_t extra;
explicit operator bool () const {return !null;}
bool operator== (nullptr_t) const {return null;}
bool operator!= (nullptr_t) const {return !null;}
// Check in a type-independent way if the value is empty. The value must
// not be NULL.
//
bool
empty () const;
// Creation. A default-initialzied value is NULL and can be reset back to
// NULL by assigning nullptr. Values can be copied and copy-assigned. Note
// that for assignment, the values' types should be the same or LHS should
// be untyped.
//
//
public:
~value () {*this = nullptr;}
explicit
value (nullptr_t = nullptr): type (nullptr), null (true), extra (0) {}
explicit
value (const value_type* t): type (t), null (true), extra (0) {}
explicit
value (names); // Create untyped value.
template <typename T>
explicit
value (T); // Create value of value_traits<T>::value_type type.
// Note: preserves type.
//
value&
operator= (nullptr_t) {if (!null) reset (); return *this;}
value (value&&);
explicit value (const value&);
value& operator= (value&&);
value& operator= (const value&);
value& operator= (reference_wrapper<value>);
value& operator= (reference_wrapper<const value>);
// Assign/Append/Prepend.
//
public:
// Assign/append a typed value. For assign, LHS should be either of the
// same type or untyped. For append, LHS should be either of the same type
// or untyped and NULL.
//
template <typename T> value& operator= (T);
template <typename T> value& operator+= (T);
template <typename T> value& operator+= (T* v) {
return v != nullptr ? *this += *v : *this;}
value& operator= (const char* v) {return *this = string (v);}
value& operator+= (const char* v) {return *this += string (v);}
// Assign/append/prepend raw data. Variable is optional and is only used
// for diagnostics.
//
void assign (names&&, const variable*);
void assign (name&&, const variable*); // Shortcut for single name.
void append (names&&, const variable*);
void prepend (names&&, const variable*);
// Implementation details, don't use directly except in representation
// type implementations.
//
public:
// Fast, unchecked cast of data_ to T.
//
template <typename T> T& as () & {return reinterpret_cast<T&> (data_);}
template <typename T> T&& as () && {return move (as<T> ());}
template <typename T> const T& as () const& {
return reinterpret_cast<const T&> (data_);}
public:
// The maximum size we can store directly is sufficient for the most
// commonly used types (string, vector, map) on all the platforms that we
// support (each type should static assert this in its value_traits
// specialization below). Types that don't fit will have to be handled
// with an extra dynamic allocation.
//
static constexpr size_t size_ = sizeof (name_pair);
std::aligned_storage<size_>::type data_;
// Make sure we have sufficient storage for untyped values.
//
static_assert (sizeof (names) <= size_, "insufficient space");
private:
void
reset ();
};
// This is what we call a "value pack"; it can be created by the eval
// context and passed as arguments to functions. Usually we will have just
// one value.
//
using values = small_vector<value, 1>;
// The values should be of the same type (or both be untyped) except NULL
// values can also be untyped. NULL values compare equal and a NULL value
// is always less than a non-NULL.
//
bool operator== (const value&, const value&);
bool operator!= (const value&, const value&);
bool operator< (const value&, const value&);
bool operator<= (const value&, const value&);
bool operator> (const value&, const value&);
bool operator>= (const value&, const value&);
// Value cast. The first three expect the value to be not NULL. The cast
// from lookup expects the value to also be defined.
//
// Note that a cast to names expects the value to be untyped while a cast
// to vector<name> -- typed.
//
// Why are these non-members? The cast is easier on the eyes and is also
// consistent with the cast operators. The other two are for symmetry.
//
template <typename T> T& cast (value&);
template <typename T> T&& cast (value&&);
template <typename T> const T& cast (const value&);
template <typename T> const T& cast (const lookup&);
// As above but returns NULL if the value is NULL (or not defined, in
// case of lookup).
//
template <typename T> T* cast_null (value&);
template <typename T> const T* cast_null (const value&);
template <typename T> const T* cast_null (const lookup&);
// As above but returns empty value if the value is NULL (or not defined, in
// case of lookup).
//
template <typename T> const T& cast_empty (const value&);
template <typename T> const T& cast_empty (const lookup&);
// As above but returns the specified default if the value is NULL (or not
// defined, in case of lookup). Note that the return is by value, not by
// reference.
//
template <typename T> T cast_default (const value&, const T&);
template <typename T> T cast_default (const lookup&, const T&);
// As above but returns false/true if the value is NULL (or not defined,
// in case of lookup). Note that the template argument is only for
// documentation and should be bool (or semantically compatible).
//
template <typename T> T cast_false (const value&);
template <typename T> T cast_false (const lookup&);
template <typename T> T cast_true (const value&);
template <typename T> T cast_true (const lookup&);
// Assign value type to the value. The variable is optional and is only used
// for diagnostics.
//
template <typename T>
void typify (value&, const variable*);
void typify (value&, const value_type&, const variable*);
void typify_atomic (value&, const value_type&, const variable*);
// Remove value type from the value reversing it to names. This is similar
// to reverse() below except that it modifies the value itself.
//
void untypify (value&);
// Reverse the value back to names. The value should not be NULL and storage
// should be empty.
//
vector_view<const name>
reverse (const value&, names& storage);
vector_view<name>
reverse (value&, names& storage);
// lookup
//
// A variable can be undefined, NULL, or contain a (potentially empty)
// value.
//
class variable_map;
struct lookup
{
using value_type = build2::value;
// If vars is not NULL, then value is variable_map::value_data.
//
const value_type* value; // NULL if undefined.
const variable* var; // Storage variable.
const variable_map* vars; // Storage map.
bool
defined () const {return value != nullptr;}
// Note: returns true if defined and not NULL.
//
explicit operator bool () const {return defined () && !value->null;}
const value_type& operator* () const {return *value;}
const value_type* operator-> () const {return value;}
// Return true if this value belongs to the specified scope or target.
// Note that it can also be a target type/pattern-specific value in which
// case it won't belong to either unless we pass true as a second argument
// to consider it belonging to a scope (note that this test is expensive).
//
template <typename T>
bool
belongs (const T& x) const {return vars == &x.vars;}
template <typename T>
bool
belongs (const T& x, bool target_type_pattern) const;
lookup (): value (nullptr), var (nullptr), vars (nullptr) {}
template <typename T>
lookup (const value_type& v, const variable& r, const T& x)
: lookup (&v, &r, &x.vars) {}
lookup (const value_type& v, const variable& r, const variable_map& m)
: lookup (&v, &r, &m) {}
lookup (const value_type* v, const variable* r, const variable_map* m)
: value (v),
var (v != nullptr ? r : nullptr),
vars (v != nullptr ? m : nullptr) {}
};
// Two lookups are equal if they point to the same variable.
//
inline bool
operator== (const lookup& x, const lookup& y)
{
bool r (x.value == y.value);
assert (!r || x.vars == y.vars);
return r;
}
inline bool
operator!= (const lookup& x, const lookup& y) {return !(x == y);}
// Representation types.
//
// Potential optimizations:
//
// - Split value::operator=/+=() into const T and T&&, also overload
// value_traits functions that they call.
//
// - Specialization for vector<names> (if used and becomes critical).
//
template <typename T, typename E>
struct value_traits_specialization; // enable_if'able specialization support.
template <typename T>
struct value_traits: value_traits_specialization <T, void> {};
// {
// static_assert (sizeof (T) <= value::size_, "insufficient space");
//
// // Convert name to T. If rhs is not NULL, then it is the second half
// // of a pair. Only needs to be provided by simple types. Throw
// // invalid_argument (with a message) if the name is not a valid
// // representation of value (in which case the name should remain
// // unchanged for diagnostics).
// //
// static T convert (name&&, name* rhs);
//
// // Assign/append/prepend T to value which is already of type T but can
// // be NULL.
// //
// static void assign (value&, T&&);
// static void append (value&, T&&);
// static void prepend (value&, T&&);
//
// // Reverse a value back to name. Only needs to be provided by simple
// // types.
// //
// static name reverse (const T&);
//
// // Compare two values. Only needs to be provided by simple types.
// //
// static int compare (const T&, const T&);
//
// // Return true if the value is empty.
// //
// static bool empty (const T&);
//
// // True if can be constructed from empty names as T().
// //
// static const bool empty_value = true;
//
// static const T empty_instance;
//
// // For simple types (those that can be used as elements of containers),
// // type_name must be constexpr in order to sidestep the static init
// // order issue (in fact, that's the only reason we have it both here
// // and in value_type.name -- value_type cannot be constexpr because
// // of pointers to function template instantiations).
// //
// static const char* const type_name;
// static const build2::value_type value_type;
// };
// Convert name to a simple value. Throw invalid_argument (with a message)
// if the name is not a valid representation of value (in which case the
// name remains unchanged for diagnostics). The second version is called for
// a pair.
//
template <typename T> T convert (name&&);
template <typename T> T convert (name&&, name&&);
// As above but can also be called for container types. Note that in this
// case (container) if invalid_argument is thrown, the names are not
// guaranteed to be unchanged.
//
//template <typename T> T convert (names&&); (declaration causes ambiguity)
// Convert value to T. If value is already of type T, then simply cast it.
// Otherwise call convert(names) above.
//
template <typename T> T convert (value&&);
// Default implementations of the dtor/copy_ctor/copy_assing callbacks for
// types that are stored directly in value::data_ and the provide all the
// necessary functions (copy/move ctor and assignment operator).
//
template <typename T>
static void
default_dtor (value&);
template <typename T>
static void
default_copy_ctor (value&, const value&, bool);
template <typename T>
static void
default_copy_assign (value&, const value&, bool);
// Default implementations of the empty callback that calls
// value_traits<T>::empty().
//
template <typename T>
static bool
default_empty (const value&);
// Default implementations of the assign/append/prepend callbacks for simple
// types. They call value_traits<T>::convert() and then pass the result to
// value_traits<T>::assign()/append()/prepend(). As a result, it may not be
// the most efficient way to do it.
//
template <typename T>
static void
simple_assign (value&, names&&, const variable*);
template <typename T>
static void
simple_append (value&, names&&, const variable*);
template <typename T>
static void
simple_prepend (value&, names&&, const variable*);
// Default implementations of the reverse callback for simple types that
// calls value_traits<T>::reverse() and adds the result to the vector. As a
// result, it may not be the most efficient way to do it.
//
template <typename T>
static names_view
simple_reverse (const value&, names&);
// Default implementations of the compare callback for simple types that
// calls value_traits<T>::compare().
//
template <typename T>
static int
simple_compare (const value&, const value&);
// names
//
template <>
struct value_traits<names>
{
static const names& empty_instance;
};
// bool
//
template <>
struct value_traits<bool>
{
static_assert (sizeof (bool) <= value::size_, "insufficient space");
static bool convert (name&&, name*);
static void assign (value&, bool);
static void append (value&, bool); // OR.
static name reverse (bool x) {return name (x ? "true" : "false");}
static int compare (bool, bool);
static bool empty (bool) {return false;}
static const bool empty_value = false;
static const char* const type_name;
static const build2::value_type value_type;
};
template <>
struct value_traits<uint64_t>
{
static_assert (sizeof (uint64_t) <= value::size_, "insufficient space");
static uint64_t convert (name&&, name*);
static void assign (value&, uint64_t);
static void append (value&, uint64_t); // ADD.
static name reverse (uint64_t x) {return name (to_string (x));}
static int compare (uint64_t, uint64_t);
static bool empty (bool) {return false;}
static const bool empty_value = false;
static const char* const type_name;
static const build2::value_type value_type;
};
// Treat unsigned integral types as uint64. Note that bool is handled
// differently at an earlier stage.
//
template <typename T>
struct value_traits_specialization<T,
typename std::enable_if<
std::is_integral<T>::value &&
std::is_unsigned<T>::value>::type>:
value_traits<uint64_t> {};
// string
//
template <>
struct value_traits<string>
{
static_assert (sizeof (string) <= value::size_, "insufficient space");
static string convert (name&&, name*);
static void assign (value&, string&&);
static void append (value&, string&&);
static void prepend (value&, string&&);
static name reverse (const string& x) {return name (x);}
static int compare (const string&, const string&);
static bool empty (const string& x) {return x.empty ();}
static const bool empty_value = true;
static const string& empty_instance;
static const char* const type_name;
static const build2::value_type value_type;
};
// Treat const char* as string.
//
template <>
struct value_traits<const char*>: value_traits<string> {};
// path
//
template <>
struct value_traits<path>
{
static_assert (sizeof (path) <= value::size_, "insufficient space");
static path convert (name&&, name*);
static void assign (value&, path&&);
static void append (value&, path&&); // operator/
static void prepend (value&, path&&); // operator/
static name reverse (const path& x) {
return x.to_directory ()
? name (path_cast<dir_path> (x))
: name (x.string ());
}
static int compare (const path&, const path&);
static bool empty (const path& x) {return x.empty ();}
static const bool empty_value = true;
static const path& empty_instance;
static const char* const type_name;
static const build2::value_type value_type;
};
// dir_path
//
template <>
struct value_traits<dir_path>
{
static_assert (sizeof (dir_path) <= value::size_, "insufficient space");
static dir_path convert (name&&, name*);
static void assign (value&, dir_path&&);
static void append (value&, dir_path&&); // operator/
static void prepend (value&, dir_path&&); // operator/
static name reverse (const dir_path& x) {return name (x);}
static int compare (const dir_path&, const dir_path&);
static bool empty (const dir_path& x) {return x.empty ();}
static const bool empty_value = true;
static const dir_path& empty_instance;
static const char* const type_name;
static const build2::value_type value_type;
};
// abs_dir_path
//
template <>
struct value_traits<abs_dir_path>
{
static_assert (sizeof (abs_dir_path) <= value::size_,
"insufficient space");
static abs_dir_path convert (name&&, name*);
static void assign (value&, abs_dir_path&&);
static void append (value&, abs_dir_path&&); // operator/
static name reverse (const abs_dir_path& x) {return name (x);}
static int compare (const abs_dir_path&, const abs_dir_path&);
static bool empty (const abs_dir_path& x) {return x.empty ();}
static const bool empty_value = true;
static const char* const type_name;
static const build2::value_type value_type;
};
// name
//
template <>
struct value_traits<name>
{
static_assert (sizeof (name) <= value::size_, "insufficient space");
static name convert (name&&, name*);
static void assign (value&, name&&);
static name reverse (const name& x) {return x;}
static int compare (const name& l, const name& r) {return l.compare (r);}
static bool empty (const name& x) {return x.empty ();}
static const bool empty_value = true;
static const char* const type_name;
static const build2::value_type value_type;
};
// name_pair
//
// An empty first or second half of a pair is treated as unspecified (this
// way it can be usage-specific whether a single value is first or second
// half of a pair). If both are empty then this is an empty value (and not a
// pair of two empties).
//
template <>
struct value_traits<name_pair>
{
static_assert (sizeof (name_pair) <= value::size_, "insufficient space");
static name_pair convert (name&&, name*);
static void assign (value&, name_pair&&);
static int compare (const name_pair&, const name_pair&);
static bool empty (const name_pair& x) {
return x.first.empty () && x.second.empty ();}
static const bool empty_value = true;
static const char* const type_name;
static const build2::value_type value_type;
};
// process_path
//
// Note that instances that we store always have non-empty recall and
// initial is its shallow copy.
//
template <>
struct value_traits<process_path>
{
static_assert (sizeof (process_path) <= value::size_,
"insufficient space");
// This one is represented as a @-pair of names. As a result it cannot
// be stored in a container.
//
static process_path convert (name&&, name*);
static void assign (value&, process_path&&);
static int compare (const process_path&, const process_path&);
static bool empty (const process_path& x) {return x.empty ();}
static const bool empty_value = true;
static const char* const type_name;
static const build2::value_type value_type;
};
// target_triplet
//
template <>
struct value_traits<target_triplet>
{
static_assert (sizeof (target_triplet) <= value::size_,
"insufficient space");
static target_triplet convert (name&&, name*);
static void assign (value&, target_triplet&&);
static name reverse (const target_triplet& x) {return name (x.string ());}
static int compare (const target_triplet& x, const target_triplet& y) {
return x.compare (y);}
static bool empty (const target_triplet& x) {return x.empty ();}
static const bool empty_value = true;
static const char* const type_name;
static const build2::value_type value_type;
};
// vector<T>
//
template <typename T>
struct value_traits<vector<T>>
{
static_assert (sizeof (vector<T>) <= value::size_, "insufficient space");
static vector<T> convert (names&&);
static void assign (value&, vector<T>&&);
static void append (value&, vector<T>&&);
static void prepend (value&, vector<T>&&);
static bool empty (const vector<T>& x) {return x.empty ();}
static const vector<T> empty_instance;
// Make sure these are static-initialized together. Failed that VC will
// make sure it's done in the wrong order.
//
struct value_type_ex: build2::value_type
{
string type_name;
value_type_ex (value_type&&);
};
static const value_type_ex value_type;
};
// map<K, V>
//
template <typename K, typename V>
struct value_traits<std::map<K, V>>
{
template <typename K1, typename V1> using map = std::map<K1, V1>;
static_assert (sizeof (map<K, V>) <= value::size_, "insufficient space");
static void assign (value&, map<K, V>&&);
static void append (value&, map<K, V>&&);
static void prepend (value& v, map<K, V>&& x) {
return append (v, move (x));}
static bool empty (const map<K, V>& x) {return x.empty ();}
static const map<K, V> empty_instance;
// Make sure these are static-initialized together. Failed that VC will
// make sure it's done in the wrong order.
//
struct value_type_ex: build2::value_type
{
string type_name;
value_type_ex (value_type&&);
};
static const value_type_ex value_type;
};
// Project-wide (as opposed to global) variable overrides. Returned by
// context.cxx:reset().
//
struct variable_override
{
const variable& var; // Original variable.
const variable& ovr; // Override variable.
value val;
};
using variable_overrides = vector<variable_override>;
// Variable pool.
//
// The global version is protected by the model mutex.
//
class variable_pool
{
public:
// Find existing (assert exists).
//
const variable&
operator[] (const string& name) const;
// Return NULL if there is no variable with this name.
//
const variable*
find (const string& name) const;
// Find existing or insert new (untyped, non-overridable, normal
// visibility; but may be overridden by a pattern).
//
const variable&
insert (string name)
{
return insert (move (name), nullptr, nullptr, nullptr);
}
// Insert or override (type/visibility). Note that by default the
// variable is not overridable.
//
const variable&
insert (string name, variable_visibility v)
{
return insert (move (name), nullptr, &v, nullptr);
}
const variable&
insert (string name, bool overridable)
{
return insert (move (name), nullptr, nullptr, &overridable);
}
const variable&
insert (string name, bool overridable, variable_visibility v)
{
return insert (move (name), nullptr, &v, &overridable);
}
template <typename T>
const variable&
insert (string name)
{
return insert (move (name), &value_traits<T>::value_type);
}
template <typename T>
const variable&
insert (string name, variable_visibility v)
{
return insert (move (name), &value_traits<T>::value_type, &v);
}
template <typename T>
const variable&
insert (string name, bool overridable)
{
return insert (
move (name), &value_traits<T>::value_type, nullptr, &overridable);
}
template <typename T>
const variable&
insert (string name, bool overridable, variable_visibility v)
{
return insert (
move (name), &value_traits<T>::value_type, &v, &overridable);
}
// Alias an existing variable with a new name.
//
// Aliasing is purely a lookup-level mechanism. That is, when variable_map
// looks for a value, it tries all the aliases (and returns the storage
// variable in lookup).
//
// The existing variable should already have final type and visibility
// values which are copied over to the alias.
//
// Overridable aliased variables are most likely a bad idea: without a
// significant effort, the overrides will only be applied along the alias
// names (i.e., there would be no cross-alias overriding). So for now we
// don't allow this (use the common variable mechanism instead).
//
const variable&
insert_alias (const variable& var, string name);
// Insert a variable pattern. Any variable that matches this pattern
// will have the specified type, visibility, and overridability. If
// match is true, then individual insertions of the matching variable
// must match the specified type/visibility/overridability. Otherwise,
// individual insertions can provide alternative values and the pattern
// values are a fallback (if you specify false you better be very clear
// about what you are trying to achieve).
//
// The pattern must be in the form [<prefix>.](*|**)[.<suffix>] where
// '*' matches single component stems (i.e., 'foo' but not 'foo.bar')
// and '**' matches single and multi-component stems. Note that only
// multi-component variables are considered for pattern matching (so
// just '*' won't match anything).
//
// The patterns are matched in the more-specific-first order where the
// pattern is considered more specific if it has a greater sum of its
// prefix and suffix lengths. If the prefix and suffix are equal, then the
// '*' pattern is considered more specific than '**'. If neither is more
// specific, then they are matched in the reverse order of insertion.
//
// If retro is true then a newly inserted pattern is also applied
// retrospectively to all the existing variables that match but only
// if no more specific pattern already exists (which is then assumed
// to have been applied). So if you use this functionality, watch out
// for the insertion order (you probably want more specific first).
//
public:
void
insert_pattern (const string& pattern,
optional<const value_type*> type,
optional<bool> overridable,
optional<variable_visibility>,
bool retro = false,
bool match = true);
template <typename T>
void
insert_pattern (const string& p,
optional<bool> overridable,
optional<variable_visibility> v,
bool retro = false,
bool match = true)
{
insert_pattern (
p, &value_traits<T>::value_type, overridable, v, retro, match);
}
public:
void
clear () {map_.clear ();}
variable_pool (): variable_pool (false) {}
// RW access.
//
variable_pool&
rw () const
{
assert (phase == run_phase::load);
return const_cast<variable_pool&> (*this);
}
variable_pool&
rw (scope&) const {return const_cast<variable_pool&> (*this);}
private:
static variable_pool instance;
variable&
insert (string name,
const value_type*,
const variable_visibility* = nullptr,
const bool* overridable = nullptr,
bool pattern = true);
void
update (variable&,
const value_type*,
const variable_visibility* = nullptr,
const bool* = nullptr) const;
// Entities that can access bypassing the lock proof.
//
friend class parser;
friend class scope;
friend variable_overrides reset (const strings&);
public:
static const variable_pool& cinstance; // For var_pool initialization.
// Variable map.
//
private:
using key = butl::map_key<string>;
using map = std::unordered_map<key, variable>;
pair<map::iterator, bool>
insert (variable&& var)
{
// Keeping a pointer to the key while moving things during insertion is
// tricky. We could use a C-string instead of C++ for a key but that
// gets hairy very quickly (there is no std::hash for C-strings). So
// let's rely on small object-optimized std::string for now.
//
string n (var.name);
auto r (map_.insert (map::value_type (&n, move (var))));
if (r.second)
r.first->first.p = &r.first->second.name;
return r;
}
map map_;
// Patterns.
//
public:
struct pattern
{
string prefix;
string suffix;
bool multi; // Match multi-component stems.
bool match; // Must match individual variable insersions.
optional<const value_type*> type;
optional<variable_visibility> visibility;
optional<bool> overridable;
friend bool
operator< (const pattern& x, const pattern& y)
{
if (x.prefix.size () + x.suffix.size () <
y.prefix.size () + y.suffix.size ())
return true;
if (x.prefix == y.prefix && x.suffix == y.suffix)
return x.multi && !y.multi;
return false;
}
};
private:
std::multiset<pattern> patterns_;
// Global pool flag.
//
private:
explicit
variable_pool (bool global): global_ (global) {}
bool global_;
};
extern const variable_pool& var_pool;
}
// variable_map
//
namespace butl
{
template <>
struct compare_prefix<std::reference_wrapper<const build2::variable>>:
compare_prefix<std::string>
{
typedef compare_prefix<std::string> base;
explicit
compare_prefix (char d): base (d) {}
bool
operator() (const build2::variable& x, const build2::variable& y) const
{
return base::operator() (x.name, y.name);
}
bool
prefix (const build2::variable& p, const build2::variable& k) const
{
return base::prefix (p.name, k.name);
}
};
}
namespace build2
{
class variable_map
{
public:
struct value_data: value
{
using value::value;
using value::operator=;
size_t version = 0; // Incremented on each modification (variable_cache).
};
using map_type = butl::prefix_map<reference_wrapper<const variable>,
value_data,
'.'>;
using size_type = map_type::size_type;
template <typename I>
class iterator_adapter: public I
{
public:
iterator_adapter () = default;
iterator_adapter (const I& i, const variable_map& m): I (i), m_ (&m) {}
// Automatically type a newly typed value on access.
//
typename I::reference operator* () const;
typename I::pointer operator-> () const;
// Untyped access.
//
uint16_t extra () const {return I::operator* ().second.extra;}
typename I::reference untyped () const {return I::operator* ();}
private:
const variable_map* m_;
};
using const_iterator = iterator_adapter<map_type::const_iterator>;
// Lookup. Note that variable overrides will not be applied, even if
// set in this map.
//
lookup
operator[] (const variable& var) const
{
auto p (find (var));
return lookup (p.first, &p.second, this);
}
lookup
operator[] (const variable* var) const // For cached variables.
{
assert (var != nullptr);
return operator[] (*var);
}
lookup
operator[] (const string& name) const
{
const variable* var (var_pool.find (name));
return var != nullptr ? operator[] (*var) : lookup ();
}
// If typed is false, leave the value untyped even if the variable is.
// The second half of the pair is the storage variable.
//
pair<const value_data*, const variable&>
find (const variable&, bool typed = true) const;
pair<value_data*, const variable&>
find_to_modify (const variable&, bool typed = true);
// Convert a lookup pointing to a value belonging to this variable map
// to its non-const version. Note that this is only safe on the original
// values (see find_original()).
//
value&
modify (const lookup& l)
{
assert (l.vars == this);
value& r (const_cast<value&> (*l.value));
static_cast<value_data&> (r).version++;
return r;
}
// Return a value suitable for assignment. See scope for details.
//
value&
assign (const variable& var) {return insert (var).first;}
value&
assign (const variable* var) // For cached variables.
{
assert (var != nullptr);
return assign (*var);
}
// Note that the variable is expected to have already been registered.
//
value&
assign (const string& name) {return insert (var_pool[name]).first;}
// As above but also return an indication of whether the new value (which
// will be NULL) was actually inserted. Similar to find(), if typed is
// false, leave the value untyped even if the variable is.
//
pair<reference_wrapper<value>, bool>
insert (const variable&, bool typed = true);
pair<const_iterator, const_iterator>
find_namespace (const variable& ns) const
{
auto r (m_.find_sub (ns));
return make_pair (const_iterator (r.first, *this),
const_iterator (r.second, *this));
}
const_iterator
begin () const {return const_iterator (m_.begin (), *this);}
const_iterator
end () const {return const_iterator (m_.end (), *this);}
bool
empty () const {return m_.empty ();}
size_type
size () const {return m_.size ();}
public:
// Global should be true if this map is part of the global (model) state
// (e.g., scopes, etc).
//
explicit
variable_map (bool global = false): global_ (global) {}
private:
friend class variable_type_map;
void
typify (const value_data&, const variable&) const;
private:
bool global_;
map_type m_;
};
// Value caching. Used for overrides as well as target type/pattern-specific
// append/prepend.
//
// In many places we assume that we can store a reference to the returned
// variable value (e.g., install::lookup_install()). As a result, in these
// cases where we calculate the value dynamically, we have to cache it
// (note, however, that if the value becomes stale, there is no guarantee
// the references remain valid).
//
// Note that since the cache can be modified on any lookup (including during
// the execute phase), it is protected by its own mutex shard (allocated in
// main()). This shard is also used for value typification (which is kind of
// like caching) during concurrent execution phases.
//
extern size_t variable_cache_mutex_shard_size;
extern unique_ptr<shared_mutex[]> variable_cache_mutex_shard;
template <typename K>
class variable_cache
{
public:
// If the returned unique lock is locked, then the value has been
// invalidated. If the variable type does not match the value type,
// then typify the cached value.
//
pair<value&, ulock>
insert (K, const lookup& stem, size_t version, const variable&);
private:
struct entry_type
{
// Note: we use value_data instead of value since the result is often
// returned as lookup. We also maintain the version in case one cached
// value (e.g., override) is based on another (e.g., target
// type/pattern-specific prepend/append).
//
variable_map::value_data value;
size_t version = 0; // Version on which this value is based.
// Location of the stem as well as the version on which this cache
// value is based. Used to track the location and value of the stem
// for cache invalidation. NULL/0 means there is no stem.
//
const variable_map* stem_vars = nullptr;
size_t stem_version = 0;
// For GCC 4.9.
//
entry_type () = default;
entry_type (variable_map::value_data val,
size_t ver,
const variable_map* svars,
size_t sver)
: value (move (val)),
version (ver),
stem_vars (svars),
stem_version (sver) {}
};
using map_type = std::map<K, entry_type>;
map_type m_;
};
// Target type/pattern-specific variables.
//
class variable_pattern_map
{
public:
using map_type = std::map<string, variable_map>;
using const_iterator = map_type::const_iterator;
using const_reverse_iterator = map_type::const_reverse_iterator;
explicit
variable_pattern_map (bool global): global_ (global) {}
variable_map&
operator[] (const string& v)
{
return map_.emplace (v, variable_map (global_)).first->second;
}
const_iterator begin () const {return map_.begin ();}
const_iterator end () const {return map_.end ();}
const_reverse_iterator rbegin () const {return map_.rbegin ();}
const_reverse_iterator rend () const {return map_.rend ();}
bool empty () const {return map_.empty ();}
private:
bool global_;
map_type map_;
};
class variable_type_map
{
public:
using map_type = std::map<reference_wrapper<const target_type>,
variable_pattern_map>;
using const_iterator = map_type::const_iterator;
explicit
variable_type_map (bool global): global_ (global) {}
variable_pattern_map&
operator[] (const target_type& t)
{
return map_.emplace (t, variable_pattern_map (global_)).first->second;
}
const_iterator begin () const {return map_.begin ();}
const_iterator end () const {return map_.end ();}
bool empty () const {return map_.empty ();}
lookup
find (const target_type&, const string& tname, const variable&) const;
// Prepend/append value cache.
//
// The key is the combination of the "original value identity" (as a
// pointer to the value in one of the variable_pattern_map's) and the
// "target identity" (as target type and target name). Note that while at
// first it may seem like we don't need the target identity, we actually
// do since the stem may itself be target-type/pattern-specific. See
// scope::find_original() for details.
//
mutable
variable_cache<tuple<const value*, const target_type*, string>>
cache;
private:
bool global_;
map_type map_;
};
}
#include <build2/variable.ixx>
#include <build2/variable.txx>
#endif // BUILD2_VARIABLE_HXX
|