1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
// file : libbuild2/adhoc-rule-regex-pattern.cxx -*- C++ -*-
// license : MIT; see accompanying LICENSE file
#include <libbuild2/adhoc-rule-regex-pattern.hxx>
#include <libbutl/regex.hxx>
#include <libbuild2/algorithm.hxx>
namespace build2
{
using pattern_type = name::pattern_type;
adhoc_rule_regex_pattern::
adhoc_rule_regex_pattern (
const scope& s, string rn, const target_type& tt,
name&& n, const location& nloc,
names&& ans, const location& aloc,
names&& pns, const location& ploc)
: adhoc_rule_pattern (s, move (rn), tt)
{
// Semantically, our rule pattern is one logical regular expression that
// spans multiple targets and prerequisites with a single back reference
// (\N) space.
//
// To implement this we are going to concatenate all the target and
// prerequisite sub-patterns separated with a character which cannot
// appear in the name (nor is a special regex character) but which is
// printable (for diagnostics). The directory separator (`/`) feels like a
// natural choice. We will call such a concatenated string of names a
// "name signature" (we also have a "type signature"; see below) and its
// pattern a "name signature pattern".
//
regex::flag_type flags (regex::ECMAScript);
// Append the sub-pattern to text_ returning the status of the `e` flag.
//
auto append_pattern = [this, &flags, first = true] (
const string& t,
const location& loc) mutable -> bool
{
size_t n (t.size ()), p (t.rfind (t[0]));
// Process flags.
//
bool fi (false), fe (false);
for (size_t i (p + 1); i != n; ++i)
{
switch (t[i])
{
case 'i': fi = true; break;
case 'e': fe = true; break;
}
}
// For icase we require all or none of the patterns to have it.
//
if (first)
{
if (fi)
flags |= regex::icase;
}
else if (((flags & regex::icase) != 0) != fi)
fail (loc) << "inconsistent regex 'i' flag in '" << t << "'";
if (!first)
text_ += '/';
else
first = false;
text_.append (t.c_str () + 1, p - 1);
return fe;
};
// Append an element either to targets_ or prereqs_.
//
auto append_element = [&s, &append_pattern] (
vector<element>& v,
name&& n,
const location& loc,
const target_type* tt = nullptr)
{
if (tt == nullptr)
{
tt = n.untyped () ? &file::static_type : s.find_target_type (n.type);
if (tt == nullptr)
fail (loc) << "unknown target type " << n.type;
}
bool e (n.pattern &&
*n.pattern == pattern_type::regex_pattern &&
append_pattern (n.value, loc));
v.push_back (element {move (n), *tt, e});
};
// This one is always a pattern.
//
append_element (targets_, move (n), nloc, &tt);
// These are all patterns or substitutions.
//
for (name& an: ans)
append_element (targets_, move (an), aloc);
// These can be patterns, substitutions, or non-patterns.
//
for (name& pn: pns)
append_element (prereqs_, move (pn), ploc);
try
{
regex_ = regex (text_, flags);
}
catch (const regex_error& e)
{
// Print regex_error description if meaningful (no space).
//
// This may not necessarily be pointing at the actual location of the
// error but it should be close enough.
//
fail (nloc) << "invalid regex pattern '" << text_ << "'" << e;
}
}
bool adhoc_rule_regex_pattern::
match (action a, target& t, const string&, match_extra& me) const
{
tracer trace ("adhoc_rule_regex_pattern::match");
// The plan is as follows: First check the "type signature" of the target
// and its prerequisites (the primary target type has already been matched
// by the rule matching machinery). If there is a match, then concatenate
// their names into a "name signature" in the same way as for sub-patterns
// above and match that against the name signature regex pattern. If there
// is a match then this rule matches and the apply_*() functions should be
// called to process any member/prerequisite substitutions and inject them
// along with non-pattern prerequisites.
//
// It would be natural to perform the type match and concatenation of the
// names simultaneously. However, while the former should be quite cheap,
// the latter will most likely require dynamic allocation. To mitigate
// this we are going to pre-type-match the first prerequisite before
// concatenating any names. This should weed out most of the non-matches
// for sane patterns.
//
// Note also that we don't backtrack and try different combinations of the
// type-matching targets/prerequisites. We also ignore prerequisites
// marked ad hoc for type-matching.
//
auto pattern = [] (const element& e) -> bool
{
return e.name.pattern && *e.name.pattern == pattern_type::regex_pattern;
};
auto find_prereq = [a, &t] (const target_type& tt) -> optional<target_key>
{
// We use the standard logic that one would use in the rule::match()
// implementation. Except we support the unmatch and match values in
// the update variable.
//
for (prerequisite_member p: group_prerequisite_members (a, t))
{
// Note that here we don't validate the update operation override
// value (since we may not match). Instead the rule does this in
// apply().
//
lookup l;
if (include (a, t, p, a.operation () == update_id ? &l : nullptr) ==
include_type::normal && p.is_a (tt))
return p.key ().tk;
}
return nullopt;
};
// Pre-type-match the first prerequisite, if any.
//
auto pe (prereqs_.end ()), pi (find_if (prereqs_.begin (), pe, pattern));
optional<target_key> pk1;
if (pi != pe)
{
if (!(pk1 = find_prereq (pi->type)))
{
l4 ([&]{trace << rule_name << ": no " << pi->type.name
<< "{} prerequisite for target " << t;});
return false;
}
}
// Ok, this is a potential match, start concatenating the names.
//
// Note that the regex_match_results object (which we will be passing
// through to apply() in the target's auxiliary data storage) contains
// iterators pointing to the string being matched. Which means this string
// must be kept around until we are done with replacing the subsitutions.
// In fact, we cannot even move it because this may invalidate the
// iterators (e.g., in case of a small string optimization). So the plan
// is to store the string in match_extra::buffer and regex_match_results
// (which we can move) in the auxiliary data storage.
//
string& ns (me.buffer);
auto append_name = [&ns,
first = true,
storage = string ()] (const target_key& tk,
const element& e) mutable
{
if (!first)
ns += '/';
else
first = false;
ns += tk.effective_name (storage, e.match_ext);
};
// Primary target (always a pattern).
//
auto te (targets_.end ()), ti (targets_.begin ());
append_name (t.key (), *ti);
// Match ad hoc group members.
//
while ((ti = find_if (ti + 1, te, pattern)) != te)
{
const target* at (find_adhoc_member (t, ti->type));
if (at == nullptr)
{
l4 ([&]{trace << rule_name << ": no " << ti->type.name
<< "{} ad hoc target group member for target " << t;});
return false;
}
append_name (at->key (), *ti);
}
// Finish prerequisites.
//
if (pi != pe)
{
append_name (*pk1, *pi);
while ((pi = find_if (pi + 1, pe, pattern)) != pe)
{
optional<target_key> pk (find_prereq (pi->type));
if (!pk)
{
l4 ([&]{trace << rule_name << ": no " << pi->type.name
<< "{} prerequisite for target " << t;});
return false;
}
append_name (*pk, *pi);
}
}
// While it can be tempting to optimize this for patterns that don't have
// any substitutions (which would be most of them), keep in mind that we
// will also need match_results for $N variables in the recipe (or a C++
// rule implementation may want to access the match_results object).
//
regex_match_results mr;
if (!regex_match (ns, mr, regex_))
{
l4 ([&]{trace << rule_name << ": name signature '" << ns
<< "' does not match regex '" << text_
<< "' for target " << t;});
return false;
}
t.data (move (mr));
return true;
}
static inline string
substitute (const target& t,
const regex_match_results& mr,
const string& s,
const char* what)
{
string r (butl::regex_replace_match_results (
mr, s.c_str () + 1, s.rfind (s[0]) - 1));
// @@ Note that while it would have been nice to print the location here,
// (and also pass to search()->find_target_type()), we would need to
// save location_value in each element to cover multiple declarations.
//
if (r.empty ())
fail << what << " substitution '" << s << "' for target " << t
<< " results in empty name";
return r;
}
void adhoc_rule_regex_pattern::
apply_adhoc_members (action, target& t, const scope&, match_extra&) const
{
const auto& mr (t.data<regex_match_results> ());
for (auto i (targets_.begin () + 1); i != targets_.end (); ++i)
{
// These are all patterns or substitutions.
//
const element& e (*i);
if (*e.name.pattern == pattern_type::regex_pattern)
continue;
// Similar to prerequisites below, we treat member substitutions
// relative to the target.
//
dir_path d;
if (e.name.dir.empty ())
d = t.dir; // Absolute and normalized.
else
{
if (e.name.dir.absolute ())
d = e.name.dir;
else
d = t.dir / e.name.dir;
d.normalize ();
}
// @@ TODO: currently this uses type as the ad hoc member identity.
//
add_adhoc_member (
t,
e.type,
move (d),
dir_path () /* out */,
substitute (t, mr, e.name.value, "ad hoc target group member"));
}
}
void adhoc_rule_regex_pattern::
apply_prerequisites (action a, target& t,
const scope& bs,
match_extra&) const
{
const auto& mr (t.data<regex_match_results> ());
// Re-create the same clean semantics as in match_prerequisite_members().
//
bool clean (a.operation () == clean_id && !t.is_a<alias> ());
auto& pts (t.prerequisite_targets[a]);
for (const element& e: prereqs_)
{
// While it would be nice to avoid copying here, the semantics of
// search() (and find_target_type() that it calls) is just too hairy to
// duplicate and try to optimize. It feels like most of the cases will
// either fall under the small string optimization or be absolute target
// names (e.g., imported tools).
//
// @@ Perhaps we should try to optimize the absolute target name case?
//
// Which scope should we use to resolve this prerequisite? After some
// meditation it feels natural to use the target's scope for patterns
// and the rule's scope for non-patterns.
//
name n;
const scope* s;
if (e.name.pattern)
{
if (*e.name.pattern == pattern_type::regex_pattern)
continue;
// Note: cannot be project-qualified.
//
n = name (e.name.dir,
e.name.type,
substitute (t, mr, e.name.value, "prerequisite"));
s = &bs;
}
else
{
n = e.name;
s = &rule_scope;
}
const target& pt (search (t, move (n), *s, &e.type));
if (clean && !pt.in (*bs.root_scope ()))
continue;
// @@ TODO: it could be handy to mark a prerequisite (e.g., a tool)
// ad hoc so that it doesn't interfere with the $< list. Also
// clean=false. Also update=match|unmatch.
//
pts.push_back (prerequisite_target (&pt, false /* adhoc */));
}
}
void adhoc_rule_regex_pattern::
dump (ostream& os) const
{
// Targets.
//
size_t tn (targets_.size ());
if (tn != 1)
os << '<';
for (size_t i (0); i != tn; ++i)
os << (i != 0 ? " " : "") << targets_[i].name;
if (tn != 1)
os << '>';
// Prerequisites.
//
os << ':';
for (size_t i (0); i != prereqs_.size (); ++i)
os << ' ' << prereqs_[i].name;
}
}
|