1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
|
// file : libbuild2/algorithm.ixx -*- C++ -*-
// license : MIT; see accompanying LICENSE file
#include <libbuild2/rule.hxx>
#include <libbuild2/context.hxx>
#include <libbuild2/scheduler.hxx>
#include <libbuild2/export.hxx>
namespace build2
{
inline const target&
search_custom (const prerequisite& p, const target& pt)
{
assert (pt.ctx.phase == run_phase::match ||
pt.ctx.phase == run_phase::execute);
const target* e (nullptr);
if (!p.target.compare_exchange_strong (
e, &pt,
memory_order_release,
memory_order_consume))
assert (e == &pt);
return pt;
}
inline const target&
search (const target& t, const target_type& tt, const prerequisite_key& k)
{
return search (
t,
prerequisite_key {
k.proj, {&tt, k.tk.dir, k.tk.out, k.tk.name, k.tk.ext}, k.scope});
}
inline pair<target&, ulock>
search_locked (const target& t,
const target_type& tt,
const prerequisite_key& k)
{
return search_locked (
t,
prerequisite_key {
k.proj, {&tt, k.tk.dir, k.tk.out, k.tk.name, k.tk.ext}, k.scope});
}
inline const target*
search_exsiting (context& ctx,
const target_type& tt,
const prerequisite_key& k)
{
return search_existing (
ctx,
prerequisite_key {
k.proj, {&tt, k.tk.dir, k.tk.out, k.tk.name, k.tk.ext}, k.scope});
}
inline const target&
search_new (context& ctx,
const target_type& tt,
const prerequisite_key& k)
{
return search_new (
ctx,
prerequisite_key {
k.proj, {&tt, k.tk.dir, k.tk.out, k.tk.name, k.tk.ext}, k.scope});
}
inline pair<target&, ulock>
search_new_locked (context& ctx,
const target_type& tt,
const prerequisite_key& k)
{
return search_new_locked (
ctx,
prerequisite_key {
k.proj, {&tt, k.tk.dir, k.tk.out, k.tk.name, k.tk.ext}, k.scope});
}
inline const target&
search (const target& t,
const target_type& type,
const dir_path& dir,
const dir_path& out,
const string& name,
const string* ext,
const scope* scope,
const optional<project_name>& proj)
{
return search (
t,
prerequisite_key {
proj,
{
&type,
&dir, &out, &name,
ext != nullptr ? optional<string> (*ext) : nullopt
},
scope});
}
inline pair<target&, ulock>
search_locked (const target& t,
const target_type& type,
const dir_path& dir,
const dir_path& out,
const string& name,
const string* ext,
const scope* scope)
{
return search_locked (
t,
prerequisite_key {
nullopt,
{
&type,
&dir, &out, &name,
ext != nullptr ? optional<string> (*ext) : nullopt
},
scope});
}
inline const target*
search_existing (context& ctx,
const target_type& type,
const dir_path& dir,
const dir_path& out,
const string& name,
const string* ext,
const scope* scope,
const optional<project_name>& proj)
{
return search_existing (
ctx,
prerequisite_key {
proj,
{
&type,
&dir, &out, &name,
ext != nullptr ? optional<string> (*ext) : nullopt
},
scope});
}
inline const target&
search_new (context& ctx,
const target_type& type,
const dir_path& dir,
const dir_path& out,
const string& name,
const string* ext,
const scope* scope)
{
return search_new (
ctx,
prerequisite_key {
nullopt,
{
&type,
&dir, &out, &name,
ext != nullptr ? optional<string> (*ext) : nullopt
},
scope});
}
inline pair<target&, ulock>
search_new_locked (context& ctx,
const target_type& type,
const dir_path& dir,
const dir_path& out,
const string& name,
const string* ext,
const scope* scope)
{
return search_new_locked (
ctx,
prerequisite_key {
nullopt,
{
&type,
&dir, &out, &name,
ext != nullptr ? optional<string> (*ext) : nullopt
},
scope});
}
template <typename T>
inline const T&
search (const target& t,
const dir_path& dir,
const dir_path& out,
const string& name,
const string* ext,
const scope* scope)
{
return search (
t, T::static_type, dir, out, name, ext, scope).template as<T> ();
}
template <typename T>
inline const T*
search_existing (context& ctx,
const dir_path& dir,
const dir_path& out,
const string& name,
const string* ext,
const scope* scope)
{
const target* r (
search_existing (
ctx, T::static_type, dir, out, name, ext, scope));
return r != nullptr ? &r->template as<T> () : nullptr;
}
LIBBUILD2_SYMEXPORT target_lock
lock_impl (action, const target&, optional<scheduler::work_queue>);
LIBBUILD2_SYMEXPORT void
unlock_impl (action, target&, size_t);
inline target_lock::
target_lock (action_type a, target_type* t, size_t o, bool f)
: action (a), target (t), offset (o), first (f)
{
if (target != nullptr)
prev = stack (this);
}
inline void target_lock::
unstack ()
{
if (target != nullptr && prev != this)
{
const target_lock* cur (stack (prev));
if (cur != this) // NDEBUG
assert (cur == this);
prev = this;
}
}
inline void target_lock::
unlock ()
{
if (target != nullptr)
{
unlock_impl (action, *target, offset);
if (prev != this)
{
const target_lock* cur (stack (prev));
if (cur != this) // NDEBUG
assert (cur == this);
}
target = nullptr;
}
}
inline auto target_lock::
release () -> data
{
data r {action, target, offset, first};
if (target != nullptr)
{
if (prev != this)
{
const target_lock* cur (stack (prev));
if (cur != this) // NDEBUG
assert (cur == this);
}
target = nullptr;
}
return r;
}
inline target_lock::
~target_lock ()
{
unlock ();
}
inline target_lock::
target_lock (target_lock&& x) noexcept
: action (x.action), target (x.target), offset (x.offset)
{
if (target != nullptr)
{
if (x.prev != &x)
{
const target_lock* cur (stack (this));
if (cur != &x) // NDEBUG
assert (cur == &x);
prev = x.prev;
}
else
prev = this;
x.target = nullptr;
}
}
inline target_lock& target_lock::
operator= (target_lock&& x) noexcept
{
if (this != &x)
{
assert (target == nullptr);
action = x.action;
target = x.target;
offset = x.offset;
if (target != nullptr)
{
if (x.prev != &x)
{
const target_lock* cur (stack (this));
if (cur != &x) // NDEBUG
assert (cur == &x);
prev = x.prev;
}
else
prev = this;
x.target = nullptr;
}
}
return *this;
}
inline const target_lock*
dependency_cycle (action a, const target& t)
{
const target_lock* l (target_lock::stack ());
for (; l != nullptr; l = l->prev)
{
if (l->action == a && l->target == &t)
break;
}
return l;
}
inline target_lock
lock (action a, const target& t, bool m)
{
// We don't allow locking a target that has already been matched unless
// explicitly requested by the caller.
//
target_lock r (lock_impl (a, t, scheduler::work_none));
assert (!r ||
r.offset == target::offset_touched ||
r.offset == target::offset_tried ||
(m && r.offset == target::offset_matched));
return r;
}
inline target&
add_adhoc_member (target& t, const target_type& tt, const char* e)
{
string n (t.name);
if (e != nullptr)
{
n += '.';
n += e;
}
return add_adhoc_member (t, tt, t.dir, t.out, move (n));
}
inline target*
find_adhoc_member (target& g, const target_type& tt)
{
target* m (g.adhoc_member);
for (; m != nullptr && !m->is_a (tt); m = m->adhoc_member) ;
return m;
}
inline const target*
find_adhoc_member (const target& g, const target_type& tt)
{
const target* m (g.adhoc_member);
for (; m != nullptr && !m->is_a (tt); m = m->adhoc_member) ;
return m;
}
LIBBUILD2_SYMEXPORT const rule_match*
match_rule (action, target&,
const rule* skip,
bool try_match = false,
match_extra* = nullptr);
LIBBUILD2_SYMEXPORT recipe
apply_impl (action, target&, const rule_match&);
LIBBUILD2_SYMEXPORT pair<bool, target_state>
match_impl (action, const target&,
size_t, atomic_count*,
bool try_match = false);
inline void
match_inc_dependents (action a, const target& t)
{
t.ctx.dependency_count.fetch_add (1, memory_order_relaxed);
t[a].dependents.fetch_add (1, memory_order_release);
}
inline target_state
match_sync (action a, const target& t, bool fail)
{
assert (t.ctx.phase == run_phase::match);
target_state r (match_impl (a, t, 0, nullptr).second);
if (r != target_state::failed)
match_inc_dependents (a, t);
else if (fail)
throw failed ();
return r;
}
inline target_state
match_direct_sync (action a, const target& t, bool fail)
{
assert (t.ctx.phase == run_phase::match);
target_state r (match_impl (a, t, 0, nullptr).second);
if (r == target_state::failed && fail)
throw failed ();
return r;
}
inline pair<bool, target_state>
try_match_sync (action a, const target& t, bool fail)
{
assert (t.ctx.phase == run_phase::match);
pair<bool, target_state> r (
match_impl (a, t, 0, nullptr, true /* try_match */));
if (r.first)
{
if (r.second != target_state::failed)
match_inc_dependents (a, t);
else if (fail)
throw failed ();
}
return r;
}
inline pair<bool, target_state>
match_sync (action a, const target& t, unmatch um)
{
assert (t.ctx.phase == run_phase::match);
target_state s (match_impl (a, t, 0, nullptr).second);
if (s == target_state::failed)
throw failed ();
// If this is a member of the group then the state we've got is that of
// the group, not the member, while the member has matched the group and
// incremented its dependency counts. As a result, we cannot rely on the
// unchanged state in this case.
//
switch (um)
{
case unmatch::none: break;
case unmatch::unchanged:
{
if (s == target_state::unchanged && t.group == nullptr)
return make_pair (true, s);
break;
}
case unmatch::safe:
{
// Safe if unchanged or someone else is also a dependent (note that
// we never decrement this count during match so that someone else
// cannot change their mind).
//
if ((s == target_state::unchanged && t.group == nullptr) ||
t[a].dependents.load (memory_order_consume) != 0)
return make_pair (true, s);
break;
}
}
match_inc_dependents (a, t);
return make_pair (false, s);;
}
inline target_state
match_async (action a, const target& t,
size_t sc, atomic_count& tc,
bool fail)
{
context& ctx (t.ctx);
assert (ctx.phase == run_phase::match);
target_state r (match_impl (a, t, sc, &tc).second);
if (r == target_state::failed && fail && !ctx.keep_going)
throw failed ();
return r;
}
inline target_state
match_complete (action a, const target& t, bool fail)
{
return match_sync (a, t, fail);
}
inline pair<bool, target_state>
match_complete (action a, const target& t, unmatch um)
{
return match_sync (a, t, um);
}
// Clear rule match-specific target data.
//
inline void
clear_target (action a, target& t)
{
target::opstate& s (t.state[a]);
s.recipe = nullptr;
s.recipe_keep = false;
s.resolve_counted = false;
s.vars.clear ();
t.prerequisite_targets[a].clear ();
}
LIBBUILD2_SYMEXPORT void
set_rule_trace (target_lock&, const rule_match*);
inline void
set_rule (target_lock& l, const rule_match* r)
{
if (l.target->ctx.trace_match == nullptr)
(*l.target)[l.action].rule = r;
else
set_rule_trace (l, r);
}
inline void
set_recipe (target_lock& l, recipe&& r)
{
target& t (*l.target);
target::opstate& s (t[l.action]);
s.recipe = move (r);
s.recipe_group_action = false;
// If this is a noop recipe, then mark the target unchanged to allow for
// some optimizations.
//
recipe_function** f (s.recipe.target<recipe_function*> ());
if (f != nullptr && *f == &noop_action)
s.state = target_state::unchanged;
else
{
s.state = target_state::unknown;
// This gets tricky when we start considering direct execution, etc. So
// here seems like the best place to do it.
//
// We also ignore the group recipe since group action means real recipe
// is in the group and so this feels right conceptually.
//
// We also avoid incrementing this count twice for the same target if we
// have both the inner and outer operations. In our model the outer
// operation is either noop or it must delegate to the inner. While it's
// possible the inner is noop while the outer is not, it is not very
// likely. The alternative (trying to "merge" the count keeping track of
// whether inner and/or outer is noop) gets hairy rather quickly.
//
if (f != nullptr && *f == &group_action)
s.recipe_group_action = true;
else
{
if (l.action.inner ())
t.ctx.target_count.fetch_add (1, memory_order_relaxed);
}
}
}
inline void
match_recipe (target_lock& l, recipe r)
{
assert (l.target != nullptr &&
l.offset != target::offset_matched &&
l.target->ctx.phase == run_phase::match);
clear_target (l.action, *l.target);
set_rule (l, nullptr); // No rule.
set_recipe (l, move (r));
l.offset = target::offset_applied;
}
inline void
match_rule (target_lock& l, const rule_match& r)
{
assert (l.target != nullptr &&
l.offset != target::offset_matched &&
l.target->ctx.phase == run_phase::match);
clear_target (l.action, *l.target);
set_rule (l, &r);
l.offset = target::offset_matched;
}
inline recipe
match_delegate (action a, target& t, const rule& dr, bool try_match)
{
assert (t.ctx.phase == run_phase::match);
// Note: we don't touch any of the t[a] state since that was/will be set
// for the delegating rule.
//
const rule_match* r (match_rule (a, t, &dr, try_match));
return r != nullptr ? apply_impl (a, t, *r) : empty_recipe;
}
inline target_state
match_inner (action a, const target& t)
{
// In a sense this is like any other dependency.
//
assert (a.outer ());
return match_sync (a.inner_action (), t);
}
inline pair<bool, target_state>
match_inner (action a, const target& t, unmatch um)
{
assert (a.outer ());
return match_sync (a.inner_action (), t, um);
}
LIBBUILD2_SYMEXPORT void
resolve_group_impl (action, const target&, target_lock&&);
inline const target*
resolve_group (action a, const target& t)
{
if (a.outer ())
a = a.inner_action ();
switch (t.ctx.phase)
{
case run_phase::match:
{
// Grab a target lock to make sure the group state is synchronized.
//
target_lock l (lock_impl (a, t, scheduler::work_none));
// If the group is alrealy known or there is nothing else we can do,
// then unlock and return.
//
if (t.group == nullptr && l.offset < target::offset_tried)
resolve_group_impl (a, t, move (l));
break;
}
case run_phase::execute: break;
case run_phase::load: assert (false);
}
return t.group;
}
inline void
inject (action a, target& t, const target& p)
{
match_sync (a, p);
t.prerequisite_targets[a].emplace_back (&p);
}
LIBBUILD2_SYMEXPORT void
match_prerequisites (action, target&, const match_search&, const scope*);
LIBBUILD2_SYMEXPORT void
match_prerequisite_members (action, target&,
const match_search_member&,
const scope*);
inline void
match_prerequisites (action a, target& t, const match_search& ms)
{
match_prerequisites (
a,
t,
ms,
(a.operation () != clean_id || t.is_a<alias> ()
? nullptr
: &t.root_scope ()));
}
inline void
match_prerequisite_members (action a, target& t,
const match_search_member& msm)
{
if (a.operation () != clean_id || t.is_a<alias> ())
match_prerequisite_members (a, t, msm, nullptr);
else
{
// Note that here we don't iterate over members even for see-through
// groups since the group target should clean eveything up. A bit of an
// optimization.
//
match_search ms (
msm
? [&msm] (action a,
const target& t,
const prerequisite& p,
include_type i)
{
return msm (a, t, prerequisite_member {p, nullptr}, i);
}
: match_search ());
match_prerequisites (a, t, ms, &t.root_scope ());
}
}
inline void
match_prerequisites (action a, target& t, const scope& s)
{
match_prerequisites (a, t, nullptr, &s);
}
inline void
match_prerequisite_members (action a, target& t, const scope& s)
{
match_prerequisite_members (a, t, nullptr, &s);
}
LIBBUILD2_SYMEXPORT target_state
execute_impl (action, const target&, size_t, atomic_count*);
inline target_state
execute_sync (action a, const target& t, bool fail)
{
target_state r (execute_impl (a, t, 0, nullptr));
if (r == target_state::busy)
{
t.ctx.sched->wait (t.ctx.count_executed (),
t[a].task_count,
scheduler::work_none);
r = t.executed_state (a, false);
}
if (r == target_state::failed && fail)
throw failed ();
return r;
}
inline target_state
execute_async (action a, const target& t,
size_t sc, atomic_count& tc,
bool fail)
{
target_state r (execute_impl (a, t, sc, &tc));
if (r == target_state::failed && fail && !t.ctx.keep_going)
throw failed ();
return r;
}
inline target_state
execute_complete (action a, const target& t)
{
// Note: standard operation execute() sidesteps this and calls
// executed_state() directly.
context& ctx (t.ctx);
// If the target is still busy, wait for its completion.
//
ctx.sched->wait (ctx.count_executed (),
t[a].task_count,
scheduler::work_none);
return t.executed_state (a);
}
LIBBUILD2_SYMEXPORT target_state
execute_direct_impl (action, const target&, size_t, atomic_count*);
inline target_state
execute_direct_sync (action a, const target& t, bool fail)
{
target_state r (execute_direct_impl (a, t, 0, nullptr));
if (r == target_state::busy)
{
t.ctx.sched->wait (t.ctx.count_executed (),
t[a].task_count,
scheduler::work_none);
r = t.executed_state (a, false);
}
if (r == target_state::failed && fail)
throw failed ();
return r;
}
inline target_state
execute_direct_async (action a, const target& t,
size_t sc, atomic_count& tc,
bool fail)
{
target_state r (execute_direct_impl (a, t, sc, &tc));
if (r == target_state::failed && fail && !t.ctx.keep_going)
throw failed ();
return r;
}
inline target_state
execute_delegate (const recipe& r, action a, const target& t)
{
return r (a, t);
}
inline target_state
execute_inner (action a, const target& t) // @@ TMP Why inline (used as recipe)?
{
assert (a.outer ());
return execute_sync (a.inner_action (), t);
}
inline target_state
straight_execute_prerequisites (action a, const target& t,
size_t c, size_t s)
{
auto& p (t.prerequisite_targets[a]);
return straight_execute_members (a, t,
p.data (),
c == 0 ? p.size () - s: c,
s);
}
inline target_state
reverse_execute_prerequisites (action a, const target& t, size_t c)
{
auto& p (t.prerequisite_targets[a]);
return reverse_execute_members (a, t,
p.data (),
c == 0 ? p.size () : c,
p.size ());
}
inline target_state
execute_prerequisites (action a, const target& t, size_t c)
{
return t.ctx.current_mode == execution_mode::first
? straight_execute_prerequisites (a, t, c)
: reverse_execute_prerequisites (a, t, c);
}
inline target_state
straight_execute_prerequisites_inner (action a, const target& t,
size_t c, size_t s)
{
assert (a.outer ());
auto& p (t.prerequisite_targets[a]);
return straight_execute_members (t.ctx,
a.inner_action (),
t[a].task_count,
p.data (),
c == 0 ? p.size () - s : c,
s);
}
inline target_state
reverse_execute_prerequisites_inner (action a, const target& t, size_t c)
{
assert (a.outer ());
auto& p (t.prerequisite_targets[a]);
return reverse_execute_members (t.ctx,
a.inner_action (),
t[a].task_count,
p.data (),
c == 0 ? p.size () : c,
p.size ());
}
inline target_state
execute_prerequisites_inner (action a, const target& t, size_t c)
{
return t.ctx.current_mode == execution_mode::first
? straight_execute_prerequisites_inner (a, t, c)
: reverse_execute_prerequisites_inner (a, t, c);
}
// If the first argument is NULL, then the result is treated as a boolean
// value.
//
LIBBUILD2_SYMEXPORT pair<optional<target_state>, const target*>
execute_prerequisites (const target_type*,
action, const target&,
const timestamp&, const execute_filter&,
size_t);
LIBBUILD2_SYMEXPORT pair<optional<target_state>, const target*>
reverse_execute_prerequisites (const target_type*,
action, const target&,
const timestamp&, const execute_filter&,
size_t);
inline optional<target_state>
execute_prerequisites (action a, const target& t,
const timestamp& mt, const execute_filter& ef,
size_t n)
{
return execute_prerequisites (nullptr, a, t, mt, ef, n).first;
}
inline optional<target_state>
reverse_execute_prerequisites (action a, const target& t,
const timestamp& mt, const execute_filter& ef,
size_t n)
{
return reverse_execute_prerequisites (nullptr, a, t, mt, ef, n).first;
}
template <typename T>
inline pair<optional<target_state>, const T&>
execute_prerequisites (action a, const target& t,
const timestamp& mt, const execute_filter& ef,
size_t n)
{
auto p (execute_prerequisites (T::static_type, a, t, mt, ef, n));
return pair<optional<target_state>, const T&> (
p.first, static_cast<const T&> (p.second));
}
inline pair<optional<target_state>, const target&>
execute_prerequisites (const target_type& tt,
action a, const target& t,
const timestamp& mt, const execute_filter& ef,
size_t n)
{
auto p (execute_prerequisites (&tt, a, t, mt, ef, n));
return pair<optional<target_state>, const target&> (p.first, *p.second);
}
template <typename T>
inline pair<optional<target_state>, const T&>
execute_prerequisites (const target_type& tt,
action a, const target& t,
const timestamp& mt, const execute_filter& ef,
size_t n)
{
auto p (execute_prerequisites (tt, a, t, mt, ef, n));
return pair<optional<target_state>, const T&> (
p.first, static_cast<const T&> (p.second));
}
template <typename T>
inline target_state
execute_members (action a, const target& t, T ts[], size_t n)
{
return t.ctx.current_mode == execution_mode::first
? straight_execute_members (a, t, ts, n, 0)
: reverse_execute_members (a, t, ts, n, n);
}
}
|