aboutsummaryrefslogtreecommitdiff
path: root/libbuild2/install/operation.cxx
blob: 1b63bc07ef13fbe579ebd5818081db9fac314079 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
// file      : libbuild2/install/operation.cxx -*- C++ -*-
// license   : MIT; see accompanying LICENSE file

#include <libbuild2/install/operation.hxx>

#include <sstream>

#include <libbuild2/scope.hxx>
#include <libbuild2/target.hxx>
#include <libbuild2/context.hxx>
#include <libbuild2/variable.hxx>

#include <libbuild2/install/utility.hxx>

using namespace std;
using namespace butl;

namespace build2
{
  namespace install
  {
    bool context_data::
    filter (const scope& rs,
            const dir_path& base,
            const path& leaf,
            entry_type type)
    {
      assert (type != entry_type::unknown &&
              (type == entry_type::directory) == leaf.empty ());

      context& ctx (rs.ctx);

      auto& d (*static_cast<context_data*> (ctx.current_inner_odata.get ()));

      if (d.filters == nullptr || d.filters->empty ())
        return true;

      tracer trace ("install::context_data::filter");

      // Parse, resolve, and apply each filter in order.
      //
      // If redoing all this work for every entry proves too slow, we can
      // consider some form of caching (e.g., on the per-project basis).
      //
      size_t limit (0); // See below.

      for (const pair<string, string>& kv: *d.filters)
      {
        path k;
        try
        {
          k = path (kv.first);

          if (k.absolute ())
            k.normalize ();
        }
        catch (const invalid_path&)
        {
          fail << "invalid path '" << kv.first << "' in config.install.filter "
               << "value";
        }

        bool v;
        {
          const string& s (kv.second);

          size_t p (s.find (','));

          if (s.compare (0, p, "true") == 0)
            v = true;
          else if (s.compare (0, p, "false") == 0)
            v = false;
          else
            fail << "expected true or false instead of '" << string (s, 0, p)
                 << "' in config.install.filter value";

          if (p != string::npos)
          {
            if (s.compare (p + 1, string::npos, "symlink") == 0)
            {
              if (type != entry_type::symlink)
                continue;
            }
            else
              fail << "unknown modifier '" << string (s, p + 1) << "' in "
                   << "config.install.filter value";
          }
        }

        // @@ TODO (see below for all the corner cases). Note that in a sense
        //    we already have the match file in any subdirectory support via
        //    simple patterns so perhaps this is not worth the trouble. Or we
        //    could support some limited form (e.g., `**` should be in the
        //    last component). But it may still be tricky to determine if
        //    it is a sub-filter.
        //
        if (path_pattern_recursive (k))
          fail << "recursive wildcard pattern '" << kv.first << "' in "
               << "config.install.filter value";

        if (k.simple () && !k.to_directory ())
        {
          // Simple name/pattern matched against the leaf.
          //
          // @@ What if it is `**`?
          //
          if (path_pattern (k))
          {
            if (!path_match (leaf, k))
              continue;
          }
          else
          {
            if (k != leaf)
              continue;
          }
        }
        else
        {
          // Split into directory and leaf.
          //
          // @@ What if leaf is `**`?
          //
          dir_path d;
          if (k.to_directory ())
          {
            d = path_cast<dir_path> (move (k));
            k = path (); // No leaf.
          }
          else
          {
            d = k.directory ();
            k.make_leaf ();
          }

          // Resolve relative directory.
          //
          // Note that this resolution is potentially project-specific (that
          // is, different projects may have different install.* locaitons).
          //
          // Note that if the first component is/contains a wildcard (e.g.,
          // `*/`), then the resulution will fail, which feels correct (what
          // does */ mean?).
          //
          if (d.relative ())
          {
            // @@ Strictly speaking, this should be base, not root scope.
            //
            d = resolve_dir (rs, move (d));
          }

          // Return the number of path components in the path.
          //
          auto path_comp = [] (const path& p)
          {
            size_t n (0);
            for (auto i (p.begin ()); i != p.end (); ++i)
              ++n;
            return n;
          };

          // We need the sub() semantics but which uses pattern match instead
          // of equality for the prefix. Looks like chopping off the path and
          // calling path_match() on that is the best we can do.
          //
          // @@ Assumes no `**` components.
          //
          auto path_sub = [&path_comp] (const dir_path& ent,
                                        const dir_path& pat,
                                        size_t n = 0)
          {
            if (n == 0)
              n = path_comp (pat);

            dir_path p;
            for (auto i (ent.begin ()); n != 0 && i != ent.end (); --n, ++i)
              p.combine (*i, i.separator ());

            return path_match (p, pat);
          };

          // The following checks should continue on no match and fall through
          // to return.
          //
          if (k.empty ()) // Directory.
          {
            // Directories have special semantics.
            //
            // Consider this sequence of filters:
            //
            //   include/x86_64-linux-gnu/@true
            //   include/x86_64-linux-gnu/details/@false
            //   include/@false
            //
            // It seems the semantics we want is that only subcomponent
            // filters should apply. Maybe remember the latest matched
            // directory as a current limit? But perhaps we don't need to
            // remember the directory itself but the number of path
            // components?
            //
            // I guess for patterns we will use the actual matched directory,
            // not the pattern, to calculate the limit? @@ Because we
            // currently don't support `**`, we for now can count components
            // in the pattern.

            // Check if this is a sub-filter.
            //
            size_t n (path_comp (d));
            if (n <= limit)
              continue;

            if (path_pattern (d))
            {
              if (!path_sub (base, d, n))
                continue;
            }
            else
            {
              if (!base.sub (d))
                continue;
            }

            if (v)
            {
              limit = n;
              continue; // Continue looking for sub-filters.
            }
          }
          else
          {
            if (path_pattern (d))
            {
              if (!path_sub (base, d))
                continue;
            }
            else
            {
              if (!base.sub (d))
                continue;
            }

            if (path_pattern (k))
            {
              // @@ Does not handle `**`.
              //
              if (!path_match (leaf, k))
                continue;
            }
            else
            {
              if (k != leaf)
                continue;
            }
          }
        }

        l4 ([&]{trace << (base / leaf)
                      << (v ? " included by " : " excluded by ")
                      << kv.first << '@' << kv.second;});
        return v;
      }

      return true;
    }

#ifndef BUILD2_BOOTSTRAP
    context_data::
    context_data (const install::filters* fs, const path* mf)
        : filters (fs),
          manifest_name (mf),
          manifest_os (mf != nullptr
                       ? open_file_or_stdout (manifest_name, manifest_ofs)
                       : manifest_ofs),
          manifest_autorm (manifest_ofs.is_open () ? *mf : path ()),
          manifest_json (manifest_os, 0 /* indentation */)
    {
      if (manifest_ofs.is_open ())
      {
        manifest_file = *mf;
        manifest_file.complete ();
        manifest_file.normalize ();
      }
    }

    static path
    relocatable_path (context_data& d, const target& t, path p)
    {
      // This is both inefficient (re-detecting relocatable manifest for every
      // path) and a bit dirty (if multiple projects are being installed with
      // different install.{relocatable,root} values, we may end up producing
      // some paths relative and some absolute). But doing either of these
      // properly is probably not worth the extra complexity.
      //
      if (!d.manifest_file.empty ()) // Not stdout.
      {
        const scope& rs (t.root_scope ());

        if (cast_false<bool> (rs["install.relocatable"]))
        {
          // Note: install.root is abs_dir_path so absolute and normalized.
          //
          const dir_path* root (cast_null<dir_path> (rs["install.root"]));
          if (root == nullptr)
            fail << "unknown installation root directory in " << rs <<
              info << "did you forget to specify config.install.root?";

          // The manifest path would include chroot so if used, we need to add
          // it to root and the file path (we could also strip it, but then
          // making it absolute gets tricky on Windows).
          //
          dir_path md (d.manifest_file.directory ());

          if (md.sub (chroot_path (rs, *root))) // Inside installation root.
          {
            p = chroot_path (rs, p);
            try
            {
              p = p.relative (md);
            }
            catch (const invalid_path&)
            {
              fail << "unable to make filesystem entry path " << p
                   << " relative to " << md <<
                info << "required for relocatable installation manifest";
            }
          }
        }
      }

      return p;
    }

    // Serialize current target and, if tgt is not NULL, start the new target.
    //
    // Note that we always serialize directories as top-level entries. And
    // theoretically we can end up "splitting" a target with a directory
    // creation. For example, if some files that belong to the target are
    // installed into subdirectories that have not yet been created. So we
    // have to cache the information for the current target in memory and only
    // flush it once we see the next target (or the end).
    //
    // You may be wondering why not just serialize directories as target
    // entries. While we could do that, it's not quite correct conceptually,
    // since this would be the first of potentially many targets that caused
    // the directory's creation. To put it another way, while files and
    // symlinks belong to tragets, directories do not.
    //
    static void
    manifest_flush_target (context_data& d, const target* tgt)
    {
      if (d.manifest_target != nullptr)
      {
        assert (!d.manifest_target_entries.empty ());

        // Target name format is the same as in the structured result output.
        //
        ostringstream os;
        stream_verb (os, stream_verbosity (1, 0));
        os << *d.manifest_target;

        try
        {
          auto& s (d.manifest_json);

          s.begin_object ();
          s.member ("type", "target");
          s.member ("name", os.str ());
          s.member_name ("entries");
          s.begin_array ();

          for (const auto& e: d.manifest_target_entries)
          {
            path p (relocatable_path (d, *d.manifest_target, move (e.path)));

            s.begin_object ();

            if (e.target.empty ())
            {
              s.member ("type", "file");
              s.member ("path", p.string ());
              s.member ("mode", e.mode);
            }
            else
            {
              s.member ("type", "symlink");
              s.member ("path", p.string ());
              s.member ("target", e.target.string ());
            }

            s.end_object ();
          }

          s.end_array ();  // entries member
          s.end_object (); // target object
        }
        catch (const json::invalid_json_output& e)
        {
          fail << "invalid " << d.manifest_name << " json output: " << e;
        }
        catch (const io_error& e)
        {
          fail << "unable to write to " << d.manifest_name << ": " << e;
        }

        d.manifest_target_entries.clear ();
      }

      d.manifest_target = tgt;
    }

    void context_data::
    manifest_install_d (context& ctx,
                        const target& tgt,
                        const dir_path& dir,
                        const string& mode)
    {
      auto& d (*static_cast<context_data*> (ctx.current_inner_odata.get ()));

      if (d.manifest_name.path != nullptr)
      {
        try
        {
          auto& s (d.manifest_json);

          // If we moved to the next target, flush the current one.
          //
          if (d.manifest_target != &tgt)
            manifest_flush_target (d, nullptr);

          s.begin_object ();
          s.member ("type", "directory");
          s.member ("path", relocatable_path (d, tgt, dir).string ());
          s.member ("mode", mode);
          s.end_object ();
        }
        catch (const json::invalid_json_output& e)
        {
          fail << "invalid " << d.manifest_name << " json output: " << e;
        }
        catch (const io_error& e)
        {
          fail << "unable to write to " << d.manifest_name << ": " << e;
        }
      }
    }

    void context_data::
    manifest_install_f (context& ctx,
                        const target& tgt,
                        const dir_path& dir,
                        const path& name,
                        const string& mode)
    {
      auto& d (*static_cast<context_data*> (ctx.current_inner_odata.get ()));

      if (d.manifest_name.path != nullptr)
      {
        if (d.manifest_target != &tgt)
          manifest_flush_target (d, &tgt);

        d.manifest_target_entries.push_back (
          manifest_target_entry {dir / name, mode, path ()});
      }
    }

    void context_data::
    manifest_install_l (context& ctx,
                        const target& tgt,
                        const path& link_target,
                        const dir_path& dir,
                        const path& link)
    {
      auto& d (*static_cast<context_data*> (ctx.current_inner_odata.get ()));

      if (d.manifest_name.path != nullptr)
      {
        if (d.manifest_target != &tgt)
          manifest_flush_target (d, &tgt);

        d.manifest_target_entries.push_back (
          manifest_target_entry {dir / link, "", link_target});
      }
    }

    static void
    manifest_close (context& ctx)
    {
      auto& d (*static_cast<context_data*> (ctx.current_inner_odata.get ()));

      if (d.manifest_name.path != nullptr)
      {
        try
        {
          manifest_flush_target (d, nullptr);

          d.manifest_os << '\n'; // Final newline.

          if (d.manifest_ofs.is_open ())
          {
            d.manifest_ofs.close ();
            d.manifest_autorm.cancel ();
          }
        }
        catch (const json::invalid_json_output& e)
        {
          fail << "invalid " << d.manifest_name << " json output: " << e;
        }
        catch (const io_error& e)
        {
          fail << "unable to write to " << d.manifest_name << ": " << e;
        }
      }
    }
#else
    context_data::
    context_data (const install::filters* fs, const path*)
        : filters (fs)
    {
    }

    void context_data::
    manifest_install_d (context&,
                        const target&,
                        const dir_path&,
                        const string&)
    {
    }

    void context_data::
    manifest_install_f (context&,
                        const target&,
                        const dir_path&,
                        const path&,
                        const string&)
    {
    }

    void context_data::
    manifest_install_l (context&,
                        const target&,
                        const path&,
                        const dir_path&,
                        const path&)
    {
    }

    static void
    manifest_close (context&)
    {
    }
#endif

    static operation_id
    pre_install (context&,
                 const values&,
                 meta_operation_id mo,
                 const location&)
    {
      // Run update as a pre-operation, unless we are disfiguring.
      //
      return mo != disfigure_id ? update_id : 0;
    }

    static operation_id
    pre_uninstall (context&,
                   const values&,
                   meta_operation_id mo,
                   const location&)
    {
      // Run update as a pre-operation, unless we are disfiguring.
      //
      return mo != disfigure_id ? update_id : 0;
    }

    static void
    install_pre (context& ctx,
                 const values& params,
                 bool inner,
                 const location& l)
    {
      if (!params.empty ())
        fail (l) << "unexpected parameters for operation install";

      if (inner)
      {
        // See if we need to filter and/or write the installation manifest.
        //
        // Note: go straight for the public variable pool.
        //
        const filters* fs (
          cast_null<filters> (
            ctx.global_scope[*ctx.var_pool.find ("config.install.filter")]));

        const path* mf (
          cast_null<path> (
            ctx.global_scope[*ctx.var_pool.find ("config.install.manifest")]));

        // Note that we cannot calculate whether the manifest should use
        // relocatable (relative) paths once here since we don't know the
        // value of config.install.root.

        ctx.current_inner_odata = context::current_data_ptr (
          new context_data (fs, mf),
          [] (void* p) {delete static_cast<context_data*> (p);});
      }
    }

    static void
    uninstall_pre (context& ctx,
                   const values& params,
                   bool inner,
                   const location& l)
    {
      // Note: a subset of install_pre().
      //
      if (!params.empty ())
        fail (l) << "unexpected parameters for operation uninstall";

      if (inner)
      {
        const filters* fs (
          cast_null<filters> (
            ctx.global_scope[*ctx.var_pool.find ("config.install.filter")]));

        ctx.current_inner_odata = context::current_data_ptr (
          new context_data (fs, nullptr),
          [] (void* p) {delete static_cast<context_data*> (p);});
      }
    }

    static void
    install_post (context& ctx, const values&, bool inner)
    {
      if (inner)
        manifest_close (ctx);
    }

    // Note that we run both install and uninstall serially. The reason for
    // this is all the fuzzy things we are trying to do like removing empty
    // outer directories if they are empty. If we do this in parallel, then
    // those things get racy. Also, since all we do here is creating/removing
    // files, there is not going to be much speedup from doing it in parallel.
    // There is also now the installation manifest, which relies on us
    // installing all the filesystem entries of a target serially.

    const operation_info op_install {
      install_id,
      0,
      "install",
      "install",
      "installing",
      "installed",
      "has nothing to install", // We cannot "be installed".
      execution_mode::first,
      0 /* concurrency */,      // Run serially.
      &pre_install,
      nullptr,
      &install_pre,
      &install_post,
      nullptr,
      nullptr
    };

    // Note that we run update as a pre-operation, just like install. Which
    // may seem bizarre at first. We do it to obtain the exact same dependency
    // graph as install so that we uninstall exactly the same set of files as
    // install would install. Note that just matching the rules without
    // executing them may not be enough: for example, a presence of an ad hoc
    // group member may only be discovered after executing the rule (e.g., VC
    // link.exe only creates a DLL's import library if there are any exported
    // symbols).
    //
    const operation_info op_uninstall {
      uninstall_id,
      0,
      "uninstall",
      "uninstall",
      "uninstalling",
      "uninstalled",
      "is not installed",
      execution_mode::last,
      0 /* concurrency */,      // Run serially
      &pre_uninstall,
      nullptr,
      &uninstall_pre,
      nullptr,
      nullptr,
      nullptr
    };

    // Also the explicit update-for-install operation alias.
    //
    const operation_info op_update_for_install {
      update_id, // Note: not update_for_install_id.
      install_id,
      op_update.name,
      op_update.name_do,
      op_update.name_doing,
      op_update.name_did,
      op_update.name_done,
      op_update.mode,
      op_update.concurrency,
      op_update.pre_operation,
      op_update.post_operation,
      op_update.operation_pre,
      op_update.operation_post,
      op_update.adhoc_match,
      op_update.adhoc_apply
    };
  }
}