1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
|
// file : libbuild2/install/rule.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2019 Code Synthesis Ltd
// license : MIT; see accompanying LICENSE file
#include <libbuild2/install/rule.hxx>
#include <libbuild2/install/utility.hxx> // resolve_dir() declaration
#include <libbutl/filesystem.mxx> // dir_exists(), file_exists()
#include <libbuild2/scope.hxx>
#include <libbuild2/target.hxx>
#include <libbuild2/algorithm.hxx>
#include <libbuild2/filesystem.hxx>
#include <libbuild2/diagnostics.hxx>
using namespace std;
using namespace butl;
namespace build2
{
namespace install
{
// Lookup the install or install.* variable. Return NULL if not found or
// if the value is the special 'false' name (which means do not install;
// so the result can be used as bool). T is either scope or target.
//
template <typename P, typename T>
static const P*
lookup_install (T& t, const string& var)
{
auto l (t[var]);
if (!l)
return nullptr;
const P& r (cast<P> (l));
return r.simple () && r.string () == "false" ? nullptr : &r;
}
// alias_rule
//
const alias_rule alias_rule::instance;
bool alias_rule::
match (action, target&, const string&) const
{
// We always match.
//
// Note that we are called both as the outer part during the update-for-
// un/install pre-operation and as the inner part during the un/install
// operation itself.
//
return true;
}
const target* alias_rule::
filter (action a, const target& t, prerequisite_iterator& i) const
{
assert (i->member == nullptr);
return filter (a, t, i->prerequisite);
}
const target* alias_rule::
filter (action, const target& t, const prerequisite& p) const
{
const target& pt (search (t, p));
return pt.in (t.weak_scope ()) ? &pt : nullptr;
}
recipe alias_rule::
apply (action a, target& t) const
{
tracer trace ("install::alias_rule::apply");
// Pass-through to our installable prerequisites.
//
// @@ Shouldn't we do match in parallel (here and below)?
//
auto& pts (t.prerequisite_targets[a]);
auto pms (group_prerequisite_members (a, t, members_mode::never));
for (auto i (pms.begin ()), e (pms.end ()); i != e; ++i)
{
const prerequisite& p (i->prerequisite);
// Ignore excluded.
//
include_type pi (include (a, t, p));
if (!pi)
continue;
// Ignore unresolved targets that are imported from other projects.
// We are definitely not installing those.
//
if (p.proj)
continue;
// Let a customized rule have its say.
//
// Note: we assume that if the filter enters the group, then it
// iterates over all its members.
//
const target* pt (filter (a, t, i));
if (pt == nullptr)
{
l5 ([&]{trace << "ignoring " << p << " (filtered out)";});
continue;
}
// Check if this prerequisite is explicitly "not installable", that
// is, there is the 'install' variable and its value is false.
//
// At first, this might seem redundand since we could have let the
// file_rule below take care of it. The nuance is this: this
// prerequsite can be in a different subproject that hasn't loaded the
// install module (and therefore has no file_rule registered). The
// typical example would be the 'tests' subproject.
//
// Note: not the same as lookup_install() above.
//
auto l ((*pt)["install"]);
if (l && cast<path> (l).string () == "false")
{
l5 ([&]{trace << "ignoring " << *pt << " (not installable)";});
continue;
}
// If this is not a file-based target (e.g., a target group such as
// libu{}) then ignore it if there is no rule to install.
//
if (pt->is_a<file> ())
build2::match (a, *pt);
else if (!try_match (a, *pt).first)
{
l5 ([&]{trace << "ignoring " << *pt << " (no rule)";});
pt = nullptr;
}
if (pt != nullptr)
pts.push_back (prerequisite_target (pt, pi));
}
return default_recipe;
}
// fsdir_rule
//
const fsdir_rule fsdir_rule::instance;
bool fsdir_rule::
match (action, target&, const string&) const
{
// We always match.
//
// Note that we are called both as the outer part during the update-for-
// un/install pre-operation and as the inner part during the un/install
// operation itself.
//
return true;
}
recipe fsdir_rule::
apply (action a, target& t) const
{
// If this is outer part of the update-for-un/install, delegate to the
// default fsdir rule. Otherwise, this is a noop (we don't install
// fsdir{}).
//
// For now we also assume we don't need to do anything for prerequisites
// (the only sensible prerequisite of fsdir{} is another fsdir{}).
//
if (a.operation () == update_id)
{
match_inner (a, t);
return &execute_inner;
}
else
return noop_recipe;
}
// group_rule
//
const group_rule group_rule::instance (false /* see_through_only */);
bool group_rule::
match (action a, target& t, const string& h) const
{
return (!see_through || t.type ().see_through) &&
alias_rule::match (a, t, h);
}
const target* group_rule::
filter (action, const target&, const target& m) const
{
return &m;
}
recipe group_rule::
apply (action a, target& t) const
{
tracer trace ("install::group_rule::apply");
// Resolve group members.
//
// Remember that we are called twice: first during update for install
// (pre-operation) and then during install. During the former, we rely
// on the normall update rule to resolve the group members. During the
// latter, there will be no rule to do this but the group will already
// have been resolved by the pre-operation.
//
// If the rule could not resolve the group, then we ignore it.
//
group_view gv (a.outer ()
? resolve_members (a, t)
: t.group_members (a));
if (gv.members != nullptr)
{
auto& pts (t.prerequisite_targets[a]);
for (size_t i (0); i != gv.count; ++i)
{
const target* m (gv.members[i]);
if (m == nullptr)
continue;
// Let a customized rule have its say.
//
const target* mt (filter (a, t, *m));
if (mt == nullptr)
{
l5 ([&]{trace << "ignoring " << *m << " (filtered out)";});
continue;
}
// See if we were explicitly instructed not to touch this target
// (the same semantics as in the prerequisites match).
//
// Note: not the same as lookup_install() above.
//
auto l ((*mt)["install"]);
if (l && cast<path> (l).string () == "false")
{
l5 ([&]{trace << "ignoring " << *mt << " (not installable)";});
continue;
}
build2::match (a, *mt);
pts.push_back (mt); // Never ad hoc.
}
}
// Delegate to the base rule.
//
return alias_rule::apply (a, t);
}
// file_rule
//
const file_rule file_rule::instance;
bool file_rule::
match (action, target&, const string&) const
{
// We always match, even if this target is not installable (so that we
// can ignore it; see apply()).
//
return true;
}
const target* file_rule::
filter (action a, const target& t, prerequisite_iterator& i) const
{
assert (i->member == nullptr);
return filter (a, t, i->prerequisite);
}
const target* file_rule::
filter (action, const target& t, const prerequisite& p) const
{
const target& pt (search (t, p));
return pt.in (t.root_scope ()) ? &pt : nullptr;
}
recipe file_rule::
apply (action a, target& t) const
{
tracer trace ("install::file_rule::apply");
// Note that we are called both as the outer part during the update-for-
// un/install pre-operation and as the inner part during the un/install
// operation itself.
//
// In both cases we first determine if the target is installable and
// return noop if it's not. Otherwise, in the first case (update-for-
// un/install) we delegate to the normal update and in the second
// (un/install) -- perform the test.
//
if (!lookup_install<path> (t, "install"))
return noop_recipe;
// In both cases, the next step is to search, match, and collect all the
// installable prerequisites.
//
// But first, in case of the update pre-operation, match the inner rule
// (actual update). We used to do this after matching the prerequisites
// but the inner rule may provide some rule-specific information (like
// the target extension for exe{}) that may be required during the
// prerequisite search (like the base name for in{}).
//
optional<bool> unchanged;
if (a.operation () == update_id)
unchanged = match_inner (a, t, unmatch::unchanged);
auto& pts (t.prerequisite_targets[a]);
auto pms (group_prerequisite_members (a, t, members_mode::never));
for (auto i (pms.begin ()), e (pms.end ()); i != e; ++i)
{
const prerequisite& p (i->prerequisite);
// Ignore excluded.
//
include_type pi (include (a, t, p));
if (!pi)
continue;
// Ignore unresolved targets that are imported from other projects.
// We are definitely not installing those.
//
if (p.proj)
continue;
// Let a customized rule have its say.
//
// Note: we assume that if the filter enters the group, then it
// iterates over all its members.
//
const target* pt (filter (a, t, i));
if (pt == nullptr)
{
l5 ([&]{trace << "ignoring " << p << " (filtered out)";});
continue;
}
// See if we were explicitly instructed not to touch this target (the
// same semantics as in alias_rule).
//
// Note: not the same as lookup_install() above.
//
auto l ((*pt)["install"]);
if (l && cast<path> (l).string () == "false")
{
l5 ([&]{trace << "ignoring " << *pt << " (not installable)";});
continue;
}
if (pt->is_a<file> ())
{
// If the matched rule returned noop_recipe, then the target state
// is set to unchanged as an optimization. Use this knowledge to
// optimize things on our side as well since this will help a lot
// when updating static installable content (headers, documentation,
// etc).
//
if (build2::match (a, *pt, unmatch::unchanged))
pt = nullptr;
}
else if (!try_match (a, *pt).first)
{
l5 ([&]{trace << "ignoring " << *pt << " (no rule)";});
pt = nullptr;
}
if (pt != nullptr)
pts.push_back (prerequisite_target (pt, pi));
}
if (a.operation () == update_id)
{
return *unchanged
? (pts.empty () ? noop_recipe : default_recipe)
: &perform_update;
}
else
{
return [this] (action a, const target& t)
{
return a.operation () == install_id
? perform_install (a, t)
: perform_uninstall (a, t);
};
}
}
target_state file_rule::
perform_update (action a, const target& t)
{
// First execute the inner recipe then prerequisites.
//
target_state ts (execute_inner (a, t));
if (t.prerequisite_targets[a].size () != 0)
ts |= straight_execute_prerequisites (a, t);
return ts;
}
bool file_rule::
install_extra (const file&, const install_dir&) const
{
return false;
}
bool file_rule::
uninstall_extra (const file&, const install_dir&) const
{
return false;
}
auto_rmfile file_rule::
install_pre (const file& t, const install_dir&) const
{
return auto_rmfile (t.path (), false /* active */);
}
bool file_rule::
install_post (const file& t, const install_dir& id, auto_rmfile&&) const
{
return install_extra (t, id);
}
struct install_dir
{
dir_path dir;
// If not NULL, then point to the corresponding install.* value.
//
const string* sudo = nullptr;
const path* cmd = nullptr;
const strings* options = nullptr;
const string* mode = nullptr;
const string* dir_mode = nullptr;
explicit
install_dir (dir_path d = dir_path ()): dir (move (d)) {}
install_dir (dir_path d, const install_dir& b)
: dir (move (d)),
sudo (b.sudo),
cmd (b.cmd),
options (b.options),
mode (b.mode),
dir_mode (b.dir_mode) {}
};
using install_dirs = vector<install_dir>;
// Calculate a subdirectory based on l's location (*.subdirs) and if not
// empty add it to install_dirs. Return the new last element.
//
static install_dir&
resolve_subdir (install_dirs& rs,
const target& t,
const scope& s,
const lookup& l)
{
// Find the scope from which this value came and use as a base
// to calculate the subdirectory.
//
for (const scope* p (&s); p != nullptr; p = p->parent_scope ())
{
if (l.belongs (*p, true)) // Include target type/pattern-specific.
{
// The target can be in out or src.
//
const dir_path& d (t.out_dir ().leaf (p->out_path ()));
// Add it as another leading directory rather than modifying
// the last one directly; somehow, it feels right.
//
if (!d.empty ())
rs.emplace_back (rs.back ().dir / d, rs.back ());
break;
}
}
return rs.back ();
}
// Resolve installation directory name to absolute directory path. Return
// all the super-directories leading up to the destination (last).
//
// If target is not NULL, then also handle the subdirs logic.
//
static install_dirs
resolve (const scope& s,
const target* t,
dir_path d,
bool fail_unknown = true,
const string* var = nullptr)
{
install_dirs rs;
if (d.absolute ())
rs.emplace_back (move (d.normalize ()));
else
{
// If it is relative, then the first component is treated as the
// installation directory name, e.g., bin, sbin, lib, etc. Look it
// up and recurse.
//
if (d.empty ())
fail << "empty installation directory name";
const string& sn (*d.begin ());
const string var ("install." + sn);
if (const dir_path* dn = lookup_install<dir_path> (s, var))
{
if (dn->empty ())
fail << "empty installation directory for name " << sn <<
info << "did you specified empty config." << var << "?";
rs = resolve (s, t, *dn, fail_unknown, &var);
if (rs.empty ())
{
assert (!fail_unknown);
return rs; // Empty.
}
d = rs.back ().dir / dir_path (++d.begin (), d.end ());
rs.emplace_back (move (d.normalize ()), rs.back ());
}
else
{
if (fail_unknown)
fail << "unknown installation directory name '" << sn << "'" <<
info << "did you forget to specify config." << var << "?";
return rs; // Empty.
}
}
install_dir* r (&rs.back ());
// Override components in install_dir if we have our own.
//
if (var != nullptr)
{
if (auto l = s[*var + ".sudo"]) r->sudo = &cast<string> (l);
if (auto l = s[*var + ".cmd"]) r->cmd = &cast<path> (l);
if (auto l = s[*var + ".mode"]) r->mode = &cast<string> (l);
if (auto l = s[*var + ".dir_mode"]) r->dir_mode = &cast<string> (l);
if (auto l = s[*var + ".options"]) r->options = &cast<strings> (l);
if (t != nullptr)
{
if (auto l = s[*var + ".subdirs"])
{
if (cast<bool> (l))
r = &resolve_subdir (rs, *t, s, l);
}
}
}
// Set globals for unspecified components.
//
if (r->sudo == nullptr)
r->sudo = cast_null<string> (s["config.install.sudo"]);
if (r->cmd == nullptr)
r->cmd = &cast<path> (s["config.install.cmd"]);
if (r->options == nullptr)
r->options = cast_null<strings> (s["config.install.options"]);
if (r->mode == nullptr)
r->mode = &cast<string> (s["config.install.mode"]);
if (r->dir_mode == nullptr)
r->dir_mode = &cast<string> (s["config.install.dir_mode"]);
return rs;
}
static inline install_dirs
resolve (const target& t, dir_path d, bool fail_unknown = true)
{
return resolve (t.base_scope (), &t, d, fail_unknown);
}
dir_path
resolve_dir (const target& t, dir_path d, bool fail_unknown)
{
install_dirs r (resolve (t, move (d), fail_unknown));
return r.empty () ? dir_path () : move (r.back ().dir);
}
dir_path
resolve_dir (const scope& s, dir_path d, bool fail_unknown)
{
install_dirs r (resolve (s, nullptr, move (d), fail_unknown));
return r.empty () ? dir_path () : move (r.back ().dir);
}
path
resolve_file (const file& f)
{
// Note: similar logic to perform_install().
//
const path* p (lookup_install<path> (f, "install"));
if (p == nullptr) // Not installable.
return path ();
bool n (!p->to_directory ());
dir_path d (n ? p->directory () : path_cast<dir_path> (*p));
install_dirs ids (resolve (f, d));
if (!n)
{
if (auto l = f["install.subdirs"])
{
if (cast<bool> (l))
resolve_subdir (ids, f, f.base_scope (), l);
}
}
return ids.back ().dir / (n ? p->leaf () : f.path ().leaf ());
}
// On Windows we use MSYS2 install.exe and MSYS2 by default ignores
// filesystem permissions (noacl mount option). And this means, for
// example, that .exe that we install won't be runnable by Windows (MSYS2
// itself will still run them since it recognizes the file extension).
//
// NOTE: this is no longer the case and we now use noacl (and acl causes
// other problems; see baseutils fstab for details).
//
// The way we work around this (at least in our distribution of the MSYS2
// tools) is by changing the mount option for cygdrives (/c, /d, etc) to
// acl. But that's not all: we also have to install via a path that "hits"
// one of those mount points, c:\foo won't work, we have to use /c/foo.
// So this function translates an absolute Windows path to its MSYS
// representation.
//
// Note that we return the result as a string, not dir_path since path
// starting with / are illegal on Windows. Also note that the result
// doesn't have the trailing slash.
//
static string
msys_path (const dir_path& d)
{
assert (d.absolute ());
string s (d.representation ());
// First replace ':' with the drive letter (so the path is no longer
// absolute) but postpone setting the first character to / until we are
// a string.
//
s[1] = lcase (s[0]);
s = dir_path (move (s)).posix_string ();
s[0] = '/';
return s;
}
// Given an abolute path return its chroot'ed version, if any, accoring to
// install.chroot.
//
template <typename P>
static inline P
chroot_path (const scope& rs, const P& p)
{
if (const dir_path* d = cast_null<dir_path> (rs["install.chroot"]))
{
dir_path r (p.root_directory ());
assert (!r.empty ()); // Must be absolute.
return *d / p.leaf (r);
}
return p;
}
// install -d <dir>
//
static void
install_d (const scope& rs,
const install_dir& base,
const dir_path& d,
bool verbose = true)
{
// Here is the problem: if this is a dry-run, then we will keep showing
// the same directory creation commands over and over again (because we
// don't actually create them). There are two alternative ways to solve
// this: actually create the directories or simply don't show anything.
// While we use the former approach during update (see mkdir() in
// filesystem), here it feels like we really shouldn't be touching the
// destination filesystem. Plus, not showing anything will be symmetric
// with uninstall since the directories won't be empty (because we don't
// actually uninstall any files).
//
if (dry_run)
return;
dir_path chd (chroot_path (rs, d));
try
{
if (dir_exists (chd)) // May throw (e.g., EACCES).
return;
}
catch (const system_error& e)
{
fail << "invalid installation directory " << chd << ": " << e;
}
// While install -d will create all the intermediate components between
// base and dir, we do it explicitly, one at a time. This way the output
// is symmetrical to uninstall() below.
//
// Note that if the chroot directory does not exist, then install -d
// will create it and we don't bother removing it.
//
if (d != base.dir)
{
dir_path pd (d.directory ());
if (pd != base.dir)
install_d (rs, base, pd, verbose);
}
cstrings args;
string reld (
cast<string> ((*global_scope)["build.host.class"]) == "windows"
? msys_path (chd)
: relative (chd).string ());
if (base.sudo != nullptr)
args.push_back (base.sudo->c_str ());
args.push_back (base.cmd->string ().c_str ());
args.push_back ("-d");
if (base.options != nullptr)
append_options (args, *base.options);
args.push_back ("-m");
args.push_back (base.dir_mode->c_str ());
args.push_back (reld.c_str ());
args.push_back (nullptr);
process_path pp (run_search (args[0]));
if (verb >= 2)
print_process (args);
else if (verb && verbose)
text << "install " << chd;
run (pp, args);
}
// install <file> <dir>/
// install <file> <file>
//
static void
install_f (const scope& rs,
const install_dir& base,
const path& name,
const file& t,
const path& f,
bool verbose)
{
path relf (relative (f));
dir_path chd (chroot_path (rs, base.dir));
string reld (
cast<string> ((*global_scope)["build.host.class"]) == "windows"
? msys_path (chd)
: relative (chd).string ());
if (!name.empty ())
{
reld += path::traits_type::directory_separator;
reld += name.string ();
}
cstrings args;
if (base.sudo != nullptr)
args.push_back (base.sudo->c_str ());
args.push_back (base.cmd->string ().c_str ());
if (base.options != nullptr)
append_options (args, *base.options);
args.push_back ("-m");
args.push_back (base.mode->c_str ());
args.push_back (relf.string ().c_str ());
args.push_back (reld.c_str ());
args.push_back (nullptr);
process_path pp (run_search (args[0]));
if (verb >= 2)
print_process (args);
else if (verb && verbose)
text << "install " << t;
if (!dry_run)
run (pp, args);
}
void file_rule::
install_l (const scope& rs,
const install_dir& base,
const path& target,
const path& link,
bool verbose)
{
path rell (relative (chroot_path (rs, base.dir)));
rell /= link;
// We can create a symlink directly without calling ln. This, however,
// won't work if we have sudo. Also, we would have to deal with existing
// destinations (ln's -f takes care of that). So we are just going to
// always (sudo or not) use ln unless we are on Windows, where we will
// use mkanylink().
//
#ifndef _WIN32
const char* args_a[] = {
base.sudo != nullptr ? base.sudo->c_str () : nullptr,
"ln",
"-sf",
target.string ().c_str (),
rell.string ().c_str (),
nullptr};
const char** args (&args_a[base.sudo == nullptr ? 1 : 0]);
process_path pp (run_search (args[0]));
if (verb >= 2)
print_process (args);
else if (verb && verbose)
text << "install " << rell << " -> " << target;
if (!dry_run)
run (pp, args);
#else
if (verb >= 2)
text << "ln -sf " << target.string () << ' ' << rell.string ();
else if (verb && verbose)
text << "install " << rell << " -> " << target;
if (!dry_run)
try
{
try
{
// The -f part.
//
if (file_exists (rell, false /* follow_symlinks */))
try_rmfile (rell);
// We have to go the roundabout way by adding directory to the
// target and then asking for a relative symlink because it may be a
// hardlink in which case the target path will be interpreted from
// CWD.
//
mkanylink (rell.directory () / target,
rell,
true /* copy */,
true /* relative */);
}
catch (system_error& e)
{
throw pair<entry_type, system_error> (entry_type::symlink,
move (e));
}
}
catch (const pair<entry_type, system_error>& e)
{
const char* w (e.first == entry_type::regular ? "copy" :
e.first == entry_type::symlink ? "symlink" :
e.first == entry_type::other ? "hardlink" :
nullptr);
fail << "unable to make " << w << ' ' << rell << ": " << e.second;
}
#endif
}
target_state file_rule::
perform_install (action a, const target& xt) const
{
const file& t (xt.as<file> ());
const path& tp (t.path ());
// Path should have been assigned by update unless it is unreal.
//
assert (!tp.empty () || t.mtime () == timestamp_unreal);
const scope& rs (t.root_scope ());
auto install_target = [&rs, this] (const file& t,
const path& p,
bool verbose)
{
// Note: similar logic to resolve_file().
//
bool n (!p.to_directory ());
dir_path d (n ? p.directory () : path_cast<dir_path> (p));
// Resolve target directory.
//
install_dirs ids (resolve (t, d));
// Handle install.subdirs if one was specified. Unless the target path
// includes the file name in which case we assume it's a "final" path.
//
if (!n)
{
if (auto l = t["install.subdirs"])
{
if (cast<bool> (l))
resolve_subdir (ids, t, t.base_scope (), l);
}
}
// Create leading directories. Note that we are using the leading
// directory (if there is one) for the creation information (mode,
// sudo, etc).
//
for (auto i (ids.begin ()), j (i); i != ids.end (); j = i++)
install_d (rs, *j, i->dir, verbose); // install -d
install_dir& id (ids.back ());
// Override mode if one was specified.
//
if (auto l = t["install.mode"])
id.mode = &cast<string> (l);
// Install the target.
//
auto_rmfile f (install_pre (t, id));
// If install_pre() returned a different file name, make sure we
// install it as the original.
//
const path& tp (t.path ());
const path& fp (f.path);
install_f (
rs,
id,
n ? p.leaf () : fp.leaf () != tp.leaf () ? tp.leaf () : path (),
t,
f.path,
verbose);
install_post (t, id, move (f));
};
// First handle installable prerequisites.
//
target_state r (straight_execute_prerequisites (a, t));
// Then installable ad hoc group members, if any.
//
for (const target* m (t.member); m != nullptr; m = m->member)
{
if (const path* p = lookup_install<path> (*m, "install"))
{
install_target (m->as<file> (), *p, tp.empty () /* verbose */);
r |= target_state::changed;
}
}
// Finally install the target itself (since we got here we know the
// install variable is there).
//
if (!tp.empty ())
{
install_target (t, cast<path> (t["install"]), true /* verbose */);
r |= target_state::changed;
}
return r;
}
// uninstall -d <dir>
//
// We try to remove all the directories between base and dir but not base
// itself unless base == dir. Return false if nothing has been removed
// (i.e., the directories do not exist or are not empty).
//
static bool
uninstall_d (const scope& rs,
const install_dir& base,
const dir_path& d,
bool verbose)
{
// See install_d() for the rationale.
//
if (dry_run)
return false;
dir_path chd (chroot_path (rs, d));
// Figure out if we should try to remove this directory. Note that if
// it doesn't exist, then we may still need to remove outer ones.
//
bool r (false);
try
{
if ((r = dir_exists (chd))) // May throw (e.g., EACCES).
{
if (!dir_empty (chd)) // May also throw.
return false; // Won't be able to remove any outer directories.
}
}
catch (const system_error& e)
{
fail << "invalid installation directory " << chd << ": " << e;
}
if (r)
{
dir_path reld (relative (chd));
// Normally when we need to remove a file or directory we do it
// directly without calling rm/rmdir. This however, won't work if we
// have sudo. So we are going to do it both ways.
//
// While there is no sudo on Windows, deleting things that are being
// used can get complicated. So we will always use rm/rmdir from
// MSYS2/Cygwin which go above and beyond to accomplish the mission.
//
#ifndef _WIN32
if (base.sudo == nullptr)
{
if (verb >= 2)
text << "rmdir " << reld;
else if (verb && verbose)
text << "uninstall " << reld;
try
{
try_rmdir (chd);
}
catch (const system_error& e)
{
fail << "unable to remove directory " << chd << ": " << e;
}
}
else
#endif
{
const char* args_a[] = {
base.sudo != nullptr ? base.sudo->c_str () : nullptr,
"rmdir",
reld.string ().c_str (),
nullptr};
const char** args (&args_a[base.sudo == nullptr ? 1 : 0]);
process_path pp (run_search (args[0]));
if (verb >= 2)
print_process (args);
else if (verb && verbose)
text << "uninstall " << reld;
run (pp, args);
}
}
// If we have more empty directories between base and dir, then try
// to clean them up as well.
//
if (d != base.dir)
{
dir_path pd (d.directory ());
if (pd != base.dir)
r = uninstall_d (rs, base, pd, verbose) || r;
}
return r;
}
bool file_rule::
uninstall_f (const scope& rs,
const install_dir& base,
const file* t,
const path& name,
bool verbose)
{
assert (t != nullptr || !name.empty ());
path f (chroot_path (rs, base.dir) /
(name.empty () ? t->path ().leaf () : name));
try
{
// Note: don't follow symlinks so if the target is a dangling symlinks
// we will proceed to removing it.
//
if (!file_exists (f, false)) // May throw (e.g., EACCES).
return false;
}
catch (const system_error& e)
{
fail << "invalid installation path " << f << ": " << e;
}
path relf (relative (f));
if (verb == 1 && verbose)
{
if (t != nullptr)
text << "uninstall " << *t;
else
text << "uninstall " << relf;
}
// The same story as with uninstall -d (on Windows rm is also from
// MSYS2/Cygwin).
//
#ifndef _WIN32
if (base.sudo == nullptr)
{
if (verb >= 2)
text << "rm " << relf;
if (!dry_run)
{
try
{
try_rmfile (f);
}
catch (const system_error& e)
{
fail << "unable to remove file " << f << ": " << e;
}
}
}
else
#endif
{
const char* args_a[] = {
base.sudo != nullptr ? base.sudo->c_str () : nullptr,
"rm",
"-f",
relf.string ().c_str (),
nullptr};
const char** args (&args_a[base.sudo == nullptr ? 1 : 0]);
process_path pp (run_search (args[0]));
if (verb >= 2)
print_process (args);
if (!dry_run)
run (pp, args);
}
return true;
}
target_state file_rule::
perform_uninstall (action a, const target& xt) const
{
const file& t (xt.as<file> ());
const path& tp (t.path ());
// Path should have been assigned by update unless it is unreal.
//
assert (!tp.empty () || t.mtime () == timestamp_unreal);
const scope& rs (t.root_scope ());
auto uninstall_target = [&rs, this] (const file& t,
const path& p,
bool verbose) -> target_state
{
bool n (!p.to_directory ());
dir_path d (n ? p.directory () : path_cast<dir_path> (p));
// Resolve target directory.
//
install_dirs ids (resolve (t, d));
// Handle install.subdirs if one was specified.
//
if (!n)
{
if (auto l = t["install.subdirs"])
{
if (cast<bool> (l))
resolve_subdir (ids, t, t.base_scope (), l);
}
}
// Remove extras and the target itself.
//
const install_dir& id (ids.back ());
target_state r (uninstall_extra (t, id)
? target_state::changed
: target_state::unchanged);
if (uninstall_f (rs, id, &t, n ? p.leaf () : path (), verbose))
r |= target_state::changed;
// Clean up empty leading directories (in reverse).
//
// Note that we are using the leading directory (if there is one)
// for the clean up information (sudo, etc).
//
for (auto i (ids.rbegin ()), j (i), e (ids.rend ()); i != e; j = ++i)
{
if (install::uninstall_d (rs, ++j != e ? *j : *i, i->dir, verbose))
r |= target_state::changed;
}
return r;
};
// Reverse order of installation: first the target itself (since we got
// here we know the install variable is there).
//
target_state r (target_state::unchanged);
if (!tp.empty ())
r |= uninstall_target (t, cast<path> (t["install"]), true);
// Then installable ad hoc group members, if any. To be anally precise
// we would have to do it in reverse, but that's not easy (it's a
// single-linked list).
//
for (const target* m (t.member); m != nullptr; m = m->member)
{
if (const path* p = lookup_install<path> (*m, "install"))
r |= uninstall_target (m->as<file> (),
*p,
tp.empty () || r != target_state::changed);
}
// Finally handle installable prerequisites.
//
r |= reverse_execute_prerequisites (a, t);
return r;
}
}
}
|