1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
|
// file : libbuild2/parser.cxx -*- C++ -*-
// license : MIT; see accompanying LICENSE file
#include <libbuild2/parser.hxx>
#include <sstream>
#include <iostream> // cout
#include <libbutl/filesystem.hxx> // path_search
#include <libbuild2/rule.hxx>
#include <libbuild2/dump.hxx>
#include <libbuild2/scope.hxx>
#include <libbuild2/module.hxx>
#include <libbuild2/target.hxx>
#include <libbuild2/function.hxx>
#include <libbuild2/variable.hxx>
#include <libbuild2/filesystem.hxx>
#include <libbuild2/diagnostics.hxx>
#include <libbuild2/prerequisite.hxx>
#include <libbuild2/adhoc-rule-cxx.hxx>
#include <libbuild2/adhoc-rule-buildscript.hxx>
#include <libbuild2/adhoc-rule-regex-pattern.hxx>
#include <libbuild2/dist/module.hxx> // module
#include <libbuild2/config/utility.hxx> // lookup_config
using namespace std;
using namespace butl;
namespace build2
{
using type = token_type;
ostream&
operator<< (ostream& o, const attribute& a)
{
o << a.name;
if (!a.value.null)
{
o << '=';
names storage;
to_stream (o, reverse (a.value, storage), quote_mode::normal, '@');
}
return o;
}
class parser::enter_scope
{
public:
enter_scope ()
: p_ (nullptr), r_ (nullptr), s_ (nullptr), b_ (nullptr) {}
enter_scope (parser& p, dir_path&& d)
: p_ (&p), r_ (p.root_), s_ (p.scope_), b_ (p.pbase_)
{
// Try hard not to call normalize(). Most of the time we will go just
// one level deeper.
//
bool n (true);
if (d.relative ())
{
// Relative scopes are opened relative to out, not src.
//
if (d.simple () && !d.current () && !d.parent ())
{
d = dir_path (p.scope_->out_path ()) /= d.string ();
n = false;
}
else
d = p.scope_->out_path () / d;
}
if (n)
d.normalize ();
e_ = p.switch_scope (d);
}
// As above but for already absolute and normalized directory.
//
enter_scope (parser& p, const dir_path& d, bool)
: p_ (&p), r_ (p.root_), s_ (p.scope_), b_ (p.pbase_)
{
e_ = p.switch_scope (d);
}
~enter_scope ()
{
if (p_ != nullptr)
{
p_->scope_ = s_;
p_->root_ = r_;
p_->pbase_ = b_;
}
}
explicit operator bool () const {return p_ != nullptr;}
// Note: move-assignable to empty only.
//
enter_scope (enter_scope&& x) {*this = move (x);}
enter_scope& operator= (enter_scope&& x)
{
if (this != &x)
{
p_ = x.p_;
r_ = x.r_;
s_ = x.s_;
b_ = x.b_;
e_ = move (x.e_);
x.p_ = nullptr;
}
return *this;
}
enter_scope (const enter_scope&) = delete;
enter_scope& operator= (const enter_scope&) = delete;
private:
parser* p_;
scope* r_;
scope* s_;
const dir_path* b_; // Pattern base.
auto_project_env e_;
};
class parser::enter_target
{
public:
enter_target (): p_ (nullptr), t_ (nullptr) {}
enter_target (parser& p, target& t)
: p_ (&p), t_ (p.target_)
{
p.target_ = &t;
}
enter_target (parser& p,
name&& n, // If n.pair, then o is out dir.
name&& o,
bool implied,
const location& loc,
tracer& tr)
: p_ (&p), t_ (p.target_)
{
p.target_ = &insert_target (p, move (n), move (o), implied, loc, tr);
}
// Find or insert.
//
static target&
insert_target (parser& p,
name&& n, // If n.pair, then o is out dir.
name&& o,
bool implied,
const location& loc,
tracer& tr)
{
auto r (p.scope_->find_target_type (n, o, loc));
return p.ctx->targets.insert (
r.first, // target type
move (n.dir),
move (o.dir),
move (n.value),
move (r.second), // extension
implied ? target_decl::implied : target_decl::real,
tr).first;
}
// Only find.
//
static const target*
find_target (parser& p,
name& n, // If n.pair, then o is out dir.
name& o,
const location& loc,
tracer& tr)
{
auto r (p.scope_->find_target_type (n, o, loc));
return p.ctx->targets.find (r.first, // target type
n.dir,
o.dir,
n.value,
r.second, // extension
tr);
}
~enter_target ()
{
if (p_ != nullptr)
p_->target_ = t_;
}
// Note: move-assignable to empty only.
//
enter_target (enter_target&& x) {*this = move (x);}
enter_target& operator= (enter_target&& x) {
p_ = x.p_; t_ = x.t_; x.p_ = nullptr; return *this;}
enter_target (const enter_target&) = delete;
enter_target& operator= (const enter_target&) = delete;
private:
parser* p_;
target* t_;
};
class parser::enter_prerequisite
{
public:
enter_prerequisite (): p_ (nullptr), r_ (nullptr) {}
enter_prerequisite (parser& p, prerequisite& r)
: p_ (&p), r_ (p.prerequisite_)
{
assert (p.target_ != nullptr);
p.prerequisite_ = &r;
}
~enter_prerequisite ()
{
if (p_ != nullptr)
p_->prerequisite_ = r_;
}
// Note: move-assignable to empty only.
//
enter_prerequisite (enter_prerequisite&& x) {*this = move (x);}
enter_prerequisite& operator= (enter_prerequisite&& x) {
p_ = x.p_; r_ = x.r_; x.p_ = nullptr; return *this;}
enter_prerequisite (const enter_prerequisite&) = delete;
enter_prerequisite& operator= (const enter_prerequisite&) = delete;
private:
parser* p_;
prerequisite* r_;
};
void parser::
reset ()
{
pre_parse_ = false;
attributes_.clear ();
condition_ = nullopt;
default_target_ = nullptr;
peeked_ = false;
replay_ = replay::stop;
replay_data_.clear ();
}
void parser::
parse_buildfile (istream& is,
const path_name& in,
scope* root,
scope& base,
target* tgt,
prerequisite* prq)
{
lexer l (is, in);
parse_buildfile (l, root, base, tgt, prq);
}
void parser::
parse_buildfile (lexer& l,
scope* root,
scope& base,
target* tgt,
prerequisite* prq)
{
path_ = &l.name ();
lexer_ = &l;
root_ = root;
scope_ = &base;
target_ = tgt;
prerequisite_ = prq;
pbase_ = scope_->src_path_;
// Note that root_ may not be a project root (see parse_export_stub()).
//
auto_project_env penv (
stage_ != stage::boot && root_ != nullptr && root_->root_extra != nullptr
? auto_project_env (*root_)
: auto_project_env ());
if (path_->path != nullptr)
enter_buildfile (*path_->path); // Note: needs scope_.
token t;
type tt;
next (t, tt);
if (target_ != nullptr || prerequisite_ != nullptr)
{
parse_variable_block (t, tt);
}
else
{
parse_clause (t, tt);
process_default_target (t);
}
if (tt != type::eos)
fail (t) << "unexpected " << t;
}
token parser::
parse_variable (lexer& l, scope& s, const variable& var, type kind)
{
path_ = &l.name ();
lexer_ = &l;
root_ = nullptr;
scope_ = &s;
target_ = nullptr;
prerequisite_ = nullptr;
pbase_ = scope_->src_path_; // Normally NULL.
token t;
type tt;
parse_variable (t, tt, var, kind);
return t;
}
pair<value, token> parser::
parse_variable_value (lexer& l,
scope& s,
const dir_path* b,
const variable& var)
{
path_ = &l.name ();
lexer_ = &l;
root_ = nullptr;
scope_ = &s;
target_ = nullptr;
prerequisite_ = nullptr;
pbase_ = b;
token t;
type tt;
value rhs (parse_variable_value (t, tt));
value lhs;
apply_value_attributes (&var, lhs, move (rhs), type::assign);
return make_pair (move (lhs), move (t));
}
names parser::
parse_names (lexer& l,
const dir_path* b,
pattern_mode pmode,
const char* what,
const string* separators)
{
path_ = &l.name ();
lexer_ = &l;
root_ = nullptr;
scope_ = nullptr;
target_ = nullptr;
prerequisite_ = nullptr;
pbase_ = b;
token t;
type tt;
mode (lexer_mode::value, '@');
next (t, tt);
names r (parse_names (t, tt, pmode, what, separators));
if (tt != type::eos)
fail (t) << "unexpected " << t;
return r;
}
value parser::
parse_eval (lexer& l, scope& rs, scope& bs, pattern_mode pmode)
{
path_ = &l.name ();
lexer_ = &l;
root_ = &rs;
scope_ = &bs;
target_ = nullptr;
prerequisite_ = nullptr;
pbase_ = scope_->src_path_;
// Note that root_ may not be a project root.
//
auto_project_env penv (
stage_ != stage::boot && root_ != nullptr && root_->root_extra != nullptr
? auto_project_env (*root_)
: auto_project_env ());
token t;
type tt;
next (t, tt);
if (tt != type::lparen)
fail (t) << "expected '(' instead of " << t;
location loc (get_location (t));
mode (lexer_mode::eval, '@');
next_with_attributes (t, tt);
values vs (parse_eval (t, tt, pmode));
if (next (t, tt) != type::eos)
fail (t) << "unexpected " << t;
switch (vs.size ())
{
case 0: return value (names ());
case 1: return move (vs[0]);
default: fail (loc) << "expected single value" << endf;
}
}
bool parser::
parse_clause (token& t, type& tt, bool one)
{
tracer trace ("parser::parse_clause", &path_);
// This function should be called in the normal lexing mode with the first
// token of a line or an alternative arrangements may have to be made to
// recognize the attributes.
//
// It should also always stop at a token that is at the beginning of the
// line (except for eof). That is, if something is called to parse a line,
// it should parse it until newline (or fail). This is important for
// if-else blocks, directory scopes, etc., that assume the '}' token they
// see is on the new line.
//
bool parsed (false);
while (tt != type::eos && !(one && parsed))
{
// Issue better diagnostics for stray `%`.
//
if (tt == type::percent)
fail (t) << "recipe without target";
// Extract attributes if any.
//
assert (attributes_.empty ());
auto at (attributes_push (t, tt));
// We always start with one or more names, potentially <>-grouped.
//
if (!(start_names (tt) || tt == type::labrace))
{
// Something else. Let our caller handle that.
//
if (at.first)
fail (at.second) << "attributes before " << t;
else
attributes_pop ();
break;
}
// Now we will either parse something or fail.
//
if (!parsed)
parsed = true;
// See if this is one of the directives.
//
if (tt == type::word && keyword (t))
{
const string& n (t.value);
void (parser::*f) (token&, type&) = nullptr;
// @@ Is this the only place where some of these are valid? Probably
// also in the var block?
//
if (n == "assert" ||
n == "assert!")
{
f = &parser::parse_assert;
}
else if (n == "print") // Unlike text goes to stdout.
{
f = &parser::parse_print;
}
else if (n == "fail" ||
n == "warn" ||
n == "info" ||
n == "text")
{
f = &parser::parse_diag;
}
else if (n == "dump")
{
f = &parser::parse_dump;
}
else if (n == "source")
{
f = &parser::parse_source;
}
else if (n == "include")
{
f = &parser::parse_include;
}
else if (n == "run")
{
f = &parser::parse_run;
}
else if (n == "import" ||
n == "import?" ||
n == "import!")
{
f = &parser::parse_import;
}
else if (n == "export")
{
f = &parser::parse_export;
}
else if (n == "using" ||
n == "using?")
{
f = &parser::parse_using;
}
else if (n == "define")
{
f = &parser::parse_define;
}
else if (n == "if" ||
n == "if!")
{
f = &parser::parse_if_else;
}
else if (n == "else" ||
n == "elif" ||
n == "elif!")
{
// Valid ones are handled in parse_if_else().
//
fail (t) << n << " without if";
}
else if (n == "switch")
{
f = &parser::parse_switch;
}
else if (n == "case" ||
n == "default")
{
// Valid ones are handled in parse_switch().
//
fail (t) << n << " outside switch";
}
else if (n == "for")
{
f = &parser::parse_for;
}
else if (n == "config")
{
f = &parser::parse_config;
}
else if (n == "config.environment")
{
f = &parser::parse_config_environment;
}
if (f != nullptr)
{
if (at.first)
fail (at.second) << "attributes before " << n;
else
attributes_pop ();
(this->*f) (t, tt);
continue;
}
}
location nloc (get_location (t));
names ns;
if (tt != type::labrace)
{
ns = parse_names (t, tt, pattern_mode::preserve);
// Allow things like function calls that don't result in anything.
//
if (tt == type::newline && ns.empty ())
{
if (at.first)
fail (at.second) << "standalone attributes";
else
attributes_pop ();
next (t, tt);
continue;
}
}
// Handle ad hoc target group specification (<...>).
//
// We keep an "optional" (empty) vector of names parallel to ns that
// contains the ad hoc group members.
//
adhoc_names ans;
if (tt == type::labrace)
{
while (tt == type::labrace)
{
// Parse target names inside < >.
//
// We "reserve" the right to have attributes inside <> though what
// exactly that would mean is unclear. One potentially useful
// semantics would be the ability to specify attributes for ad hoc
// members though the fact that the primary target is listed first
// would make it rather unintuitive. Maybe attributes that change
// the group semantics itself?
//
next_with_attributes (t, tt);
auto at (attributes_push (t, tt));
if (at.first)
fail (at.second) << "attributes before ad hoc target";
else
attributes_pop ();
// Allow empty case (<>).
//
if (tt != type::rabrace)
{
location aloc (get_location (t));
// The first name (or a pair) is the primary target which we need
// to keep in ns. The rest, if any, are ad hoc members that we
// should move to ans.
//
size_t m (ns.size ());
parse_names (t, tt, ns, pattern_mode::preserve);
size_t n (ns.size ());
// Another empty case (<$empty>).
//
if (m != n)
{
m = n - m - (ns[m].pair ? 2 : 1); // Number of names to move.
// Allow degenerate case with just the primary target.
//
if (m != 0)
{
n -= m; // Number of names in ns we should end up with.
ans.resize (n); // Catch up with the names vector.
adhoc_names_loc& a (ans.back ());
a.loc = move (aloc);
a.ns.insert (a.ns.end (),
make_move_iterator (ns.begin () + n),
make_move_iterator (ns.end ()));
ns.resize (n);
}
}
}
if (tt != type::rabrace)
fail (t) << "expected '>' instead of " << t;
// Parse the next chunk of target names after >, if any.
//
next (t, tt);
if (start_names (tt))
parse_names (t, tt, ns, pattern_mode::preserve);
}
if (!ans.empty ())
ans.resize (ns.size ()); // Catch up with the final chunk.
if (tt != type::colon)
fail (t) << "expected ':' instead of " << t;
if (ns.empty ())
fail (t) << "expected target before ':'";
}
// If we have a colon, then this is target-related.
//
if (tt == type::colon)
{
// While '{}:' means empty name, '{$x}:' where x is empty list
// means empty list.
//
if (ns.empty ())
fail (t) << "expected target before ':'";
attributes as (attributes_pop ());
// Call the specified parsing function (variable value/block) for
// one/each pattern/target. We handle multiple targets by replaying
// the tokens since the value/block may contain variable expansions
// that would be sensitive to the target context in which they are
// evaluated. The function signature is:
//
// void (token& t, type& tt,
// bool adhoc_member,
// optional<pattern_type>, const target_type* pat_tt, string pat,
// const location& pat_loc)
//
// Note that the target and its ad hoc members are inserted implied
// but this flag can be cleared and default_target logic applied if
// appropriate.
//
auto for_one_pat = [this, &t, &tt] (auto&& f,
name&& n,
const location& nloc)
{
// Reduce the various directory/value combinations to the scope
// directory (if any) and the pattern. Here are more interesting
// examples of patterns:
//
// */ -- */{}
// dir{*} -- dir{*}
// dir{*/} -- */dir{}
//
// foo/*/ -- foo/*/{}
// foo/dir{*/} -- foo/*/dir{}
//
// Note that these are not patterns:
//
// foo*/file{bar}
// foo*/dir{bar/}
//
// While these are:
//
// file{foo*/bar}
// dir{foo*/bar/}
//
// And this is a half-pattern (foo* should no be treated as a
// pattern but that's unfortunately indistinguishable):
//
// foo*/dir{*/} -- foo*/*/dir{}
//
// Note also that none of this applies to regex patterns (see
// the parsing code for details).
//
if (*n.pattern == pattern_type::path)
{
if (n.value.empty () && !n.dir.empty ())
{
// Note that we use string and not the representation: in a
// sense the trailing slash in the pattern is subsumed by
// the target type.
//
if (n.dir.simple ())
n.value = move (n.dir).string ();
else
{
n.value = n.dir.leaf ().string ();
n.dir.make_directory ();
}
// Treat directory as type dir{} similar to other places.
//
if (n.untyped ())
n.type = "dir";
}
else
{
// Move the directory part, if any, from value to dir.
//
try
{
n.canonicalize ();
}
catch (const invalid_path& e)
{
fail (nloc) << "invalid path '" << e.path << "'";
}
catch (const invalid_argument&)
{
fail (nloc) << "invalid pattern '" << n.value << "'";
}
}
}
// If we have the directory, then it is the scope.
//
enter_scope sg;
if (!n.dir.empty ())
{
if (path_pattern (n.dir))
fail (nloc) << "pattern in directory " << n.dir.representation ();
sg = enter_scope (*this, move (n.dir));
}
// Resolve target type. If none is specified, then it's file{}.
//
const target_type* ttype (n.untyped ()
? &file::static_type
: scope_->find_target_type (n.type));
if (ttype == nullptr)
fail (nloc) << "unknown target type " << n.type;
f (t, tt, false, n.pattern, ttype, move (n.value), nloc);
};
auto for_each = [this, &trace, &for_one_pat,
&t, &tt, &as, &ns, &nloc, &ans] (auto&& f)
{
// We need replay if we have multiple targets or ad hoc members.
//
// Note: watch out for an out-qualified single target (two names).
//
replay_guard rg (*this,
ns.size () > 2 ||
(ns.size () == 2 && !ns[0].pair) ||
!ans.empty ());
for (size_t i (0), e (ns.size ()); i != e; )
{
name& n (ns[i]);
if (n.qualified ())
fail (nloc) << "project name in target " << n;
// Figure out if this is a target or a target type/pattern (yeah,
// it can be a mixture).
//
if (n.pattern)
{
if (!as.empty ())
fail (as.loc) << "attributes before target type/pattern";
if (n.pair)
fail (nloc) << "out-qualified target type/pattern";
if (!ans.empty () && !ans[i].ns.empty ())
fail (ans[i].loc) << "ad hoc member in target type/pattern";
if (*n.pattern == pattern_type::regex_substitution)
fail (nloc) << "regex substitution " << n << " without "
<< "regex pattern";
for_one_pat (forward<decltype (f)> (f), move (n), nloc);
}
else
{
vector<reference_wrapper<target>> ams;
{
name o (n.pair ? move (ns[++i]) : name ());
enter_target tg (*this,
move (n),
move (o),
true /* implied */,
nloc,
trace);
if (!as.empty ())
apply_target_attributes (*target_, as);
// Enter ad hoc members.
//
if (!ans.empty ())
{
// Note: index after the pair increment.
//
ams = enter_adhoc_members (move (ans[i]), true /* implied */);
}
f (t, tt, false, nullopt, nullptr, string (), location ());
}
for (target& am: ams)
{
rg.play (); // Replay.
enter_target tg (*this, am);
f (t, tt, true, nullopt, nullptr, string (), location ());
}
}
if (++i != e)
rg.play (); // Replay.
}
};
next_with_attributes (t, tt); // Recognize attributes after `:`.
// See if this could be an ad hoc pattern rule. It's a pattern rule if
// the primary target is a pattern and it has (1) prerequisites and/or
// (2) recipes. Only one primary target per pattern rule declaration
// is allowed.
//
// Note, however, that what looks like a pattern may turn out to be
// just a pattern-specific variable assignment or variable block,
// which both can appear with multiple targets/patterns on the left
// hand side, or even a mixture of them. Still, instead of trying to
// weave the pattern rule logic into the already hairy code below, we
// are going to handle it separately and deal with the "degenerate"
// cases (variable assignment/block) both here and below.
//
if (ns[0].pattern && ns.size () == (ns[0].pair ? 2 : 1))
{
name& n (ns[0]);
if (n.qualified ())
fail (nloc) << "project name in target pattern " << n;
if (n.pair)
fail (nloc) << "out-qualified target pattern";
if (*n.pattern == pattern_type::regex_substitution)
fail (nloc) << "regex substitution " << n << " without "
<< "regex pattern";
// Parse prerequisites, if any.
//
location ploc;
names pns;
if (tt != type::newline)
{
auto at (attributes_push (t, tt));
if (!start_names (tt))
fail (t) << "unexpected " << t;
// Note that unlike below, here we preserve the pattern in the
// prerequisites.
//
ploc = get_location (t);
pns = parse_names (t, tt, pattern_mode::preserve);
// Target type/pattern-specific variable assignment.
//
if (tt == type::assign || tt == type::prepend || tt == type::append)
{
if (!ans.empty ())
fail (ans[0].loc) << "ad hoc member in target type/pattern";
// Note: see the same code below if changing anything here.
//
type akind (tt);
const location aloc (get_location (t));
const variable& var (parse_variable_name (move (pns), ploc));
apply_variable_attributes (var);
if (var.visibility > variable_visibility::target)
{
fail (nloc) << "variable " << var << " has " << var.visibility
<< " visibility but is assigned on a target";
}
for_one_pat (
[this, &var, akind, &aloc] (
token& t, type& tt,
bool,
optional<pattern_type> pt, const target_type* ptt,
string pat, const location& ploc)
{
parse_type_pattern_variable (t, tt,
*pt, *ptt, move (pat), ploc,
var, akind, aloc);
},
move (n),
nloc);
next_after_newline (t, tt);
if (!as.empty ())
fail (as.loc) << "attributes before target type/pattern";
continue; // Just a target type/pattern-specific var assignment.
}
if (at.first)
fail (at.second) << "attributes before prerequisite pattern";
else
attributes_pop ();
// @@ TODO
//
if (tt == type::colon)
fail (t) << "prerequisite type/pattern-specific variables "
<< "not yet supported";
}
// Next we may have a target type/pattern specific variable block
// potentially followed by recipes.
//
next_after_newline (t, tt);
if (tt == type::lcbrace && peek () == type::newline)
{
// Note: see the same code below if changing anything here.
//
next (t, tt); // Newline.
next (t, tt); // First token inside the variable block.
for_one_pat (
[this] (
token& t, type& tt,
bool,
optional<pattern_type> pt, const target_type* ptt,
string pat, const location& ploc)
{
parse_variable_block (t, tt, pt, ptt, move (pat), ploc);
},
name (n), // Note: can't move (could still be a rule).
nloc);
if (tt != type::rcbrace)
fail (t) << "expected '}' instead of " << t;
next (t, tt); // Newline.
next_after_newline (t, tt, '}'); // Should be on its own line.
// See if this is just a target type/pattern-specific var block.
//
if (pns.empty () &&
tt != type::percent && tt != type::multi_lcbrace)
{
if (!ans.empty ())
fail (ans[0].loc) << "ad hoc member in target type/pattern";
if (!as.empty ())
fail (as.loc) << "attributes before target type/pattern";
continue;
}
}
// Ok, this is an ad hoc pattern rule.
//
// First process the attributes.
//
string rn;
{
const location& l (as.loc);
for (auto& a: as)
{
const string& n (a.name);
value& v (a.value);
// rule_name=
//
if (n == "rule_name")
{
try
{
rn = convert<string> (move (v));
if (rn.empty ())
throw invalid_argument ("empty name");
}
catch (const invalid_argument& e)
{
fail (l) << "invalid " << n << " attribute value: " << e;
}
}
else
fail (l) << "unknown ad hoc pattern rule attribute " << a;
}
}
// What should we do if we have neither prerequisites nor recipes?
// While such a declaration doesn't make much sense, it can happen,
// for example, with an empty variable expansion:
//
// file{*.txt}: $extra
//
// So let's silently ignore it.
//
if (pns.empty () && tt != type::percent && tt != type::multi_lcbrace)
continue;
// Process and verify the pattern.
//
pattern_type pt (*n.pattern);
optional<pattern_type> st;
const char* pn;
switch (pt)
{
case pattern_type::path:
pn = "path";
break;
case pattern_type::regex_pattern:
pn = "regex";
st = pattern_type::regex_substitution;
break;
case pattern_type::regex_substitution:
// Unreachable.
break;
}
// Make sure patterns have no directory components. While we may
// decide to support this in the future, currently the appropriate
// semantics is not immediately obvious. Whatever we decide, it
// should be consistent with the target type/pattern-specific
// variables where it is interpreted as a scope (and which doesn't
// feel like the best option for pattern rules). See also depdb
// dyndep --update-* patterns.
//
auto check_pattern = [this] (name& n, const location& loc)
{
try
{
// Move the directory component for path patterns.
//
if (*n.pattern == pattern_type::path)
n.canonicalize ();
if (n.dir.empty ())
return;
}
catch (const invalid_path&)
{
// Fall through.
}
fail (loc) << "directory in pattern " << n;
};
check_pattern (n, nloc);
// Verify all the ad hoc members are patterns or substitutions and
// of the correct type.
//
names ns (ans.empty () ? names () : move (ans[0].ns));
const location& aloc (ans.empty () ? location () : ans[0].loc);
for (name& n: ns)
{
if (!n.pattern || !(*n.pattern == pt || (st && *n.pattern == *st)))
{
fail (aloc) << "expected " << pn << " pattern or substitution "
<< "instead of " << n;
}
if (*n.pattern != pattern_type::regex_substitution)
check_pattern (n, aloc);
}
// The same for prerequisites except here we can have non-patterns.
//
for (name& n: pns)
{
if (n.pattern)
{
if (!(*n.pattern == pt || (st && *n.pattern == *st)))
{
fail (ploc) << "expected " << pn << " pattern or substitution "
<< "instead of " << n;
}
if (*n.pattern != pattern_type::regex_substitution)
check_pattern (n, ploc);
}
}
// Derive the rule name unless specified explicitly. It must be
// unique in this scope.
//
// It would have been nice to include the location but unless we
// include the absolute path to the buildfile (which would be
// unwieldy), it could be ambigous.
//
// NOTE: we rely on the <...> format in dump.
//
if (rn.empty ())
rn = "<ad hoc pattern rule #" +
to_string (scope_->adhoc_rules.size () + 1) + '>';
auto& ars (scope_->adhoc_rules);
auto i (find_if (ars.begin (), ars.end (),
[&rn] (const unique_ptr<adhoc_rule_pattern>& rp)
{
return rp->rule_name == rn;
}));
const target_type* ttype (nullptr);
if (i != ars.end ())
{
// @@ TODO: append ad hoc members, prereqs (we now have
// [rule_name=] which we can use to reference the same
// rule).
//
ttype = &(*i)->type;
assert (false);
}
else
{
// Resolve target type (same as in for_one_pat()).
//
ttype = n.untyped ()
? &file::static_type
: scope_->find_target_type (n.type);
if (ttype == nullptr)
fail (nloc) << "unknown target type " << n.type;
unique_ptr<adhoc_rule_pattern> rp;
switch (pt)
{
case pattern_type::path:
// @@ TODO
fail (nloc) << "path pattern rules not yet supported";
break;
case pattern_type::regex_pattern:
rp.reset (new adhoc_rule_regex_pattern (
*scope_, rn, *ttype,
move (n), nloc,
move (ns), aloc,
move (pns), ploc));
break;
case pattern_type::regex_substitution:
// Unreachable.
break;
}
ars.push_back (move (rp));
i = --ars.end ();
}
adhoc_rule_pattern& rp (**i);
// Parse the recipe chain if any.
//
if (tt == type::percent || tt == type::multi_lcbrace)
{
small_vector<shared_ptr<adhoc_rule>, 1> recipes;
parse_recipe (t, tt, token (t), recipes, ttype, rn);
for (shared_ptr<adhoc_rule>& pr: recipes)
{
// Can be NULL if the recipe is disabled with a condition.
//
if (pr != nullptr)
{
pr->pattern = &rp; // Connect recipe to pattern.
rp.rules.push_back (move (pr));
}
}
// Register this adhoc rule for all its actions.
//
for (shared_ptr<adhoc_rule>& pr: rp.rules)
{
adhoc_rule& r (*pr);
for (action a: r.actions)
{
// This covers both duplicate recipe actions within the rule
// pattern (similar to parse_recipe()) as well as conflicts
// with other rules (ad hoc or not).
//
if (!scope_->rules.insert (a, *ttype, rp.rule_name, r))
{
const meta_operation_info* mf (
root_->root_extra->meta_operations[a.meta_operation ()]);
const operation_info* of (
root_->root_extra->operations[a.operation ()]);
fail (r.loc)
<< "duplicate " << mf->name << '(' << of->name << ") rule "
<< rp.rule_name << " for target type " << ttype->name
<< "{}";
}
// We also register for a wildcard operation in order to get
// called to provide the reverse operation fallback (see
// match_impl() for the gory details).
//
// Note that we may end up trying to insert a duplicate of the
// same rule (e.g., for the same meta-operation). Feels like
// we should never try to insert for a different rule since
// for ad hoc rules names are unique.
//
scope_->rules.insert (
a.meta_operation (), 0,
*ttype, rp.rule_name, rp.fallback_rule_);
// We also register for the dist meta-operation in order to
// inject additional prerequisites which may "pull" additional
// sources into the distribution. Unless there is an explicit
// recipe for dist.
//
// And the same for the configure meta-operation to, for
// example, make sure a hinted ad hoc rule matches. @@ Hm,
// maybe we fixed this with action-specific hints? But the
// injection part above may still apply.
//
if (a.meta_operation () == perform_id)
{
auto reg = [this, ttype, &rp, &r] (action ea)
{
for (shared_ptr<adhoc_rule>& pr: rp.rules)
for (action a: pr->actions)
if (ea == a)
return;
scope_->rules.insert (ea, *ttype, rp.rule_name, r);
};
reg (action (dist_id, a.operation ()));
reg (action (configure_id, a.operation ()));
}
// @@ TODO: if this rule does dynamic member discovery of a
// see-through target group, then we may also need to
// register update for other meta-operations (see, for
// example, wildcard update registration in the cli
// module).
}
}
}
continue;
}
if (tt == type::newline)
{
// See if this is a target-specific variable and/or recipe block(s).
//
// Note that we cannot just let parse_dependency() handle this case
// because we can have (a mixture of) target type/patterns.
//
// Also, it handles the exception to the rule that if a dependency
// declaration ends with a colon, then the variable assignment/block
// that follows is for the prerequisite. Compare:
//
// foo: x = y foo: fox: x = y
// bar: bar: baz:
// { {
// x = y x = y
// } }
//
next (t, tt);
if (tt == type::percent ||
tt == type::multi_lcbrace ||
(tt == type::lcbrace && peek () == type::newline))
{
// Parse the block(s) for each target.
//
// Note that because we have to peek past the closing brace(s) to
// see whether there is a/another recipe block, we have to make
// that token part of the replay (we cannot peek past the replay
// sequence).
//
// Note: similar code to the version in parse_dependency().
//
auto parse = [
this,
st = token (t), // Save start token (will be gone on replay).
recipes = small_vector<shared_ptr<adhoc_rule>, 1> ()]
(token& t, type& tt,
bool am,
optional<pattern_type> pt, const target_type* ptt, string pat,
const location& ploc) mutable
{
token rt; // Recipe start token.
// The variable block, if any, should be first.
//
if (st.type == type::lcbrace)
{
// Note: see the same code above if changing anything here.
//
next (t, tt); // Newline.
next (t, tt); // First token inside the variable block.
parse_variable_block (t, tt, pt, ptt, move (pat), ploc);
if (tt != type::rcbrace)
fail (t) << "expected '}' instead of " << t;
next (t, tt); // Newline.
next_after_newline (t, tt, '}'); // Should be on its own line.
if (tt != type::percent && tt != type::multi_lcbrace)
return;
rt = t;
}
else
rt = st;
// If this is an ad hoc group member then we know we are
// replaying and can skip the recipe.
//
if (am)
{
replay_skip ();
next (t, tt);
return;
}
if (pt)
fail (rt) << "unexpected recipe after target type/pattern" <<
info << "ad hoc pattern rule may not be combined with other "
<< "targets or patterns";
parse_recipe (t, tt, rt, recipes);
};
for_each (parse);
}
else
{
// If not followed by a block, then it's a target without any
// prerequisites. We, however, cannot just fall through to the
// parse_dependency() call because we have already seen the next
// token.
//
// Note also that we treat this as an explicit dependency
// declaration (i.e., not implied).
//
enter_targets (move (ns), nloc, move (ans), 0, as);
}
continue;
}
// Target-specific variable assignment or dependency declaration,
// including a dependency chain and/or prerequisite-specific variable
// assignment and/or recipe block(s).
//
auto at (attributes_push (t, tt));
if (!start_names (tt))
fail (t) << "unexpected " << t;
// @@ PAT: currently we pattern-expand target-specific var names.
//
const location ploc (get_location (t));
names pns (parse_names (t, tt, pattern_mode::expand));
// Target-specific variable assignment.
//
// Note that neither here nor in parse_dependency() below we allow
// specifying recipes following a target-specified variable assignment
// (but we do allow them following a target-specific variable block).
//
if (tt == type::assign || tt == type::prepend || tt == type::append)
{
// Note: see the same code above if changing anything here.
//
type akind (tt);
const location aloc (get_location (t));
const variable& var (parse_variable_name (move (pns), ploc));
apply_variable_attributes (var);
// If variable visibility ends before, then it doesn't make sense
// to assign it in this context.
//
if (var.visibility > variable_visibility::target)
{
fail (nloc) << "variable " << var << " has " << var.visibility
<< " visibility but is assigned on a target";
}
// Parse the assignment for each target.
//
for_each (
[this, &var, akind, &aloc] (
token& t, type& tt,
bool,
optional<pattern_type> pt, const target_type* ptt, string pat,
const location& ploc)
{
if (pt)
parse_type_pattern_variable (t, tt,
*pt, *ptt, move (pat), ploc,
var, akind, aloc);
else
parse_variable (t, tt, var, akind);
});
next_after_newline (t, tt);
}
// Dependency declaration potentially followed by a chain and/or a
// target/prerequisite-specific variable assignment/block and/or
// recipe block(s).
//
else
{
if (at.first)
fail (at.second) << "attributes before prerequisites";
else
attributes_pop ();
parse_dependency (t, tt,
move (ns), nloc,
move (ans),
move (pns), ploc,
as);
}
continue;
}
// Variable assignment.
//
// This can take any of the following forms:
//
// x = y
// foo/ x = y (ns will have two elements)
// foo/x = y (ns will have one element)
//
// And in the future we may also want to support:
//
// foo/ bar/ x = y
//
// Note that we don't support this:
//
// foo/ [attrs] x = y
//
// Because the meaning of `[attrs]` would be ambiguous (it could also be
// a name). Note that the above semantics can be easily achieved with an
// explicit directory scope:
//
// foo/
// {
// [attrs] x = y
// }
//
if (tt == type::assign || tt == type::prepend || tt == type::append)
{
// Detect and handle the directory scope. If things look off, then we
// let parse_variable_name() complain.
//
dir_path d;
size_t p;
if ((ns.size () == 2 && ns[0].directory ()) ||
(ns.size () == 1 && ns[0].simple () &&
(p = path_traits::rfind_separator (ns[0].value)) != string::npos))
{
if (at.first)
fail (at.second) << "attributes before scope directory";
// Make sure it's not a pattern (see also the target case above and
// scope below).
//
if (ns[0].pattern)
fail (nloc) << "pattern in " << ns[0];
if (ns.size () == 2)
{
d = move (ns[0].dir);
ns.erase (ns.begin ());
}
else
{
// Note that p cannot point to the last character since then it
// would have been a directory, not a simple name.
//
d = dir_path (ns[0].value, 0, p + 1);
ns[0].value.erase (0, p + 1);
}
}
const variable& var (parse_variable_name (move (ns), nloc));
apply_variable_attributes (var);
if (var.visibility > variable_visibility::scope)
{
diag_record dr (fail (nloc));
dr << "variable " << var << " has " << var.visibility
<< " visibility but is assigned on a scope";
if (var.visibility == variable_visibility::target)
dr << info << "consider changing it to '*: " << var << "'";
}
{
enter_scope sg (d.empty ()
? enter_scope ()
: enter_scope (*this, move (d)));
parse_variable (t, tt, var, tt);
}
next_after_newline (t, tt);
continue;
}
// See if this is a directory scope.
//
// Note: must be last since we are going to get the next token.
//
if (ns.size () == 1 && ns[0].directory () && tt == type::newline)
{
token ot (t);
if (next (t, tt) == type::lcbrace && peek () == type::newline)
{
// Make sure not a pattern (see also the target and directory cases
// above).
//
if (ns[0].pattern)
fail (nloc) << "pattern in " << ns[0];
next (t, tt); // Newline.
next (t, tt); // First token inside the block.
if (at.first)
fail (at.second) << "attributes before scope directory";
else
attributes_pop ();
// Can contain anything that a top level can.
//
{
enter_scope sg (*this, move (ns[0].dir));
parse_clause (t, tt);
}
if (tt != type::rcbrace)
fail (t) << "expected name or '}' instead of " << t;
next (t, tt); // Presumably newline after '}'.
next_after_newline (t, tt, '}'); // Should be on its own line.
continue;
}
t = ot;
// Fall through to fail.
}
fail (t) << "unexpected " << t << " after " << ns;
}
return parsed;
}
void parser::
parse_clause_block (token& t, type& tt, bool skip, const string& k)
{
next (t, tt); // Get newline.
next (t, tt); // First token inside the block.
if (skip)
skip_block (t, tt);
else
parse_clause (t, tt);
if (tt != type::rcbrace)
fail (t) << "expected name or '}' instead of " << t
<< " at the end of " << k << "-block";
next (t, tt); // Presumably newline after '}'.
next_after_newline (t, tt, '}'); // Should be on its own line.
}
void parser::
parse_variable_block (token& t, type& tt,
optional<pattern_type> pt, const target_type* ptt,
string pat, const location& ploc)
{
// Parse a target or prerequisite-specific variable block. If type is not
// NULL, then this is a target type/pattern-specific block.
//
// enter: first token of first line in the block (normal lexer mode)
// leave: rcbrace or eos
//
// This is a more restricted variant of parse_clause() that only allows
// variable assignments.
//
tracer trace ("parser::parse_variable_block", &path_);
while (tt != type::rcbrace && tt != type::eos)
{
attributes_push (t, tt);
// Variable names should not contain patterns so we preserve them here
// and diagnose in parse_variable_name().
//
location nloc (get_location (t));
names ns (parse_names (t, tt, pattern_mode::preserve, "variable name"));
if (tt != type::assign &&
tt != type::prepend &&
tt != type::append)
fail (t) << "expected variable assignment instead of " << t;
const variable& var (parse_variable_name (move (ns), nloc));
apply_variable_attributes (var);
if (prerequisite_ == nullptr &&
var.visibility > variable_visibility::target)
{
fail (t) << "variable " << var << " has " << var.visibility
<< " visibility but is assigned on a target";
}
if (pt)
parse_type_pattern_variable (t, tt,
*pt, *ptt, pat, ploc, // Note: can't move.
var, tt, get_location (t));
else
parse_variable (t, tt, var, tt);
if (tt != type::newline)
fail (t) << "expected newline instead of " << t;
next (t, tt);
}
}
void parser::
parse_recipe (token& t, type& tt,
const token& start,
small_vector<shared_ptr<adhoc_rule>, 1>& recipes,
const target_type* ttype,
const string& name)
{
// Parse a recipe chain.
//
// % [<attrs>] [<buildspec>]
// [if|if!|switch ...]
// {{ [<lang> ...]
// ...
// }}
// ...
//
// enter: start is percent or openining multi-curly-brace
// leave: token past newline after last closing multi-curly-brace
//
// If target_ is not NULL, then add the recipe to its adhoc_recipes.
// Otherwise, return it in recipes (used for pattern rules).
if (stage_ == stage::boot)
fail (t) << "ad hoc recipe specified during bootstrap";
// If we have a recipe, the target is not implied.
//
if (target_ != nullptr)
{
if (target_->decl != target_decl::real)
{
for (target* m (target_); m != nullptr; m = m->adhoc_member)
m->decl = target_decl::real;
if (default_target_ == nullptr)
default_target_ = target_;
}
}
bool first (replay_ != replay::play); // First target.
bool clean (false); // Seen recipe that requires cleanup.
t = start; tt = t.type;
for (size_t i (0); tt == type::percent || tt == type::multi_lcbrace; ++i)
{
// For missing else/default (see below).
//
// Note that it may remain NULL if we have, say, an if-condition that
// evaluates to false and no else. While it may be tempting to get rid
// of such "holes", it's not easy due to the replay semantics (see the
// target_ != nullptr block below). So we expect the caller to be
// prepared to handle this.
//
recipes.push_back (nullptr);
attributes as;
buildspec bs;
location bsloc;
struct data
{
const target_type* ttype;
const string& name;
small_vector<shared_ptr<adhoc_rule>, 1>& recipes;
bool first;
bool& clean;
size_t i;
attributes& as;
buildspec& bs;
const location& bsloc;
} d {ttype, name, recipes, first, clean, i, as, bs, bsloc};
// Note that this function must be called at most once per iteration.
//
auto parse_block = [this, &d] (token& t, type& tt,
bool skip,
const string& kind)
{
token st (t); // Save block start token.
optional<string> lang;
location lloc;
// Use value mode to minimize the number of special characters.
//
mode (lexer_mode::value, '@');
if (next (t, tt) == type::newline)
;
else if (tt == type::word)
{
lang = t.value;
lloc = get_location (t);
next (t, tt); // Newline after <lang>.
}
else
fail (t) << "expected recipe language instead of " << t;
if (!skip)
{
if (d.first)
{
// Note that this is always the location of the opening multi-
// curly-brace, whether we have the header or not. This is relied
// upon by the rule implementations (e.g., to calculate the first
// line of the recipe code).
//
location loc (get_location (st));
// @@ We could add an attribute (name= or recipe_name=) to allow
// the user specify a friendly name for diagnostics, similar
// to rule_name.
shared_ptr<adhoc_rule> ar;
if (!lang)
{
// Buildscript
//
ar.reset (
new adhoc_buildscript_rule (
d.name.empty () ? "<ad hoc buildscript recipe>" : d.name,
loc,
st.value.size ()));
}
else if (icasecmp (*lang, "c++") == 0)
{
// C++
//
// Parse recipe version and optional fragment separator.
//
if (tt == type::newline || tt == type::eos)
fail (t) << "expected c++ recipe version instead of " << t;
location nloc (get_location (t));
names ns (parse_names (t, tt, pattern_mode::ignore));
uint64_t ver;
try
{
if (ns.empty ())
throw invalid_argument ("empty");
if (ns[0].pair)
throw invalid_argument ("pair in value");
ver = convert<uint64_t> (move (ns[0]));
}
catch (const invalid_argument& e)
{
fail (nloc) << "invalid c++ recipe version: " << e << endf;
}
optional<string> sep;
if (ns.size () != 1)
try
{
if (ns.size () != 2)
throw invalid_argument ("multiple names");
sep = convert<string> (move (ns[1]));
if (sep->empty ())
throw invalid_argument ("empty");
}
catch (const invalid_argument& e)
{
fail (nloc) << "invalid c++ recipe fragment separator: " << e
<< endf;
}
ar.reset (
new adhoc_cxx_rule (
d.name.empty () ? "<ad hoc c++ recipe>" : d.name,
loc,
st.value.size (),
ver,
move (sep)));
}
else
fail (lloc) << "unknown recipe language '" << *lang << "'";
assert (d.recipes[d.i] == nullptr);
d.recipes[d.i] = move (ar);
}
else
{
skip_line (t, tt);
assert (d.recipes[d.i] != nullptr);
}
}
else
skip_line (t, tt);
mode (lexer_mode::foreign, '\0', st.value.size ());
next_after_newline (t, tt, st); // Should be on its own line.
if (tt != type::word)
{
diag_record dr;
dr << fail (t) << "unterminated recipe ";
if (kind.empty ()) dr << "block"; else dr << kind << "-block";
dr << info (st) << "recipe ";
if (kind.empty ()) dr << "block"; else dr << kind << "-block";
dr << " starts here" << endf;
}
if (!skip)
{
if (d.first)
{
adhoc_rule& ar (*d.recipes.back ());
// Translate each buildspec entry into action and add it to the
// recipe entry.
//
const location& l (d.bsloc);
for (metaopspec& m: d.bs)
{
meta_operation_id mi (ctx->meta_operation_table.find (m.name));
if (mi == 0)
fail (l) << "unknown meta-operation " << m.name;
const meta_operation_info* mf (
root_->root_extra->meta_operations[mi]);
if (mf == nullptr)
fail (l) << "project " << *root_ << " does not support meta-"
<< "operation " << ctx->meta_operation_table[mi].name;
for (opspec& o: m)
{
operation_id oi;
if (o.name.empty ())
{
if (mf->operation_pre == nullptr)
oi = update_id;
else
// Calling operation_pre() to translate doesn't feel
// appropriate here.
//
fail (l) << "default operation in recipe action" << endf;
}
else
oi = ctx->operation_table.find (o.name);
if (oi == 0)
fail (l) << "unknown operation " << o.name;
const operation_info* of (root_->root_extra->operations[oi]);
if (of == nullptr)
fail (l) << "project " << *root_ << " does not support "
<< "operation " << ctx->operation_table[oi];
// Note: for now always inner (see match_rule() for details).
//
action a (mi, oi);
// Check for duplicates (local).
//
if (find_if (
d.recipes.begin (), d.recipes.end (),
[a] (const shared_ptr<adhoc_rule>& r)
{
auto& as (r->actions);
return find (as.begin (), as.end (), a) != as.end ();
}) != d.recipes.end ())
{
fail (l) << "duplicate " << mf->name << '(' << of->name
<< ") recipe";
}
ar.actions.push_back (a);
}
}
// Set the recipe text.
//
if (ar.recipe_text (
*scope_,
d.ttype != nullptr ? *d.ttype : target_->type (),
move (t.value),
d.as))
d.clean = true;
// Verify we have no unhandled attributes.
//
for (attribute& a: d.as)
fail (d.as.loc) << "unknown recipe attribute " << a << endf;
}
// Copy the recipe over to the target verifying there are no
// duplicates (global).
//
if (target_ != nullptr)
{
const shared_ptr<adhoc_rule>& r (d.recipes[d.i]);
for (const shared_ptr<adhoc_rule>& er: target_->adhoc_recipes)
{
auto& as (er->actions);
for (action a: r->actions)
{
if (find (as.begin (), as.end (), a) != as.end ())
{
const meta_operation_info* mf (
root_->root_extra->meta_operations[a.meta_operation ()]);
const operation_info* of (
root_->root_extra->operations[a.operation ()]);
fail (d.bsloc)
<< "duplicate " << mf->name << '(' << of->name
<< ") recipe for target " << *target_;
}
}
}
target_->adhoc_recipes.push_back (r);
}
}
next (t, tt);
assert (tt == type::multi_rcbrace);
next (t, tt); // Newline.
next_after_newline (t, tt, token (t)); // Should be on its own line.
};
bsloc = get_location (t); // Fallback location.
if (tt == type::percent)
{
// Similar code to parse_buildspec() except here we recognize
// attributes and newlines.
//
mode (lexer_mode::buildspec, '@', 1 /* recognize newline */);
next_with_attributes (t, tt);
attributes_push (t, tt, true /* standalone */);
// Handle recipe attributes. We divide them into common and recipe
// language-specific.
//
// TODO: handle and erase common attributes if/when we have any.
//
as = attributes_pop ();
// Handle the buildspec.
//
// @@ TODO: diagnostics is a bit off ("operation or target").
//
if (tt != type::newline && tt != type::eos)
{
const location& l (bsloc = get_location (t));
bs = parse_buildspec_clause (t, tt);
// Verify we have no targets and assign default meta-operations.
//
// Note that here we don't bother with lifting operations to meta-
// operations like we do in the driver (this seems unlikely to be a
// pain point).
//
for (metaopspec& m: bs)
{
for (opspec& o: m)
{
if (!o.empty ())
fail (l) << "target in recipe action";
}
if (m.name.empty ())
m.name = "perform";
}
}
else
{
// Default is perform(update).
//
bs.push_back (metaopspec ("perform"));
bs.back ().push_back (opspec ("update"));
}
expire_mode ();
next_after_newline (t, tt, "recipe action");
// See if this is if-else or switch.
//
// We want the keyword test similar to parse_clause() but we cannot do
// it if replaying. So we skip it with understanding that if it's not
// a keywords, then it would have been an error while saving and we
// would have never actual gotten to replay in this case.
//
if (tt == type::word && (!first || keyword (t)))
{
const string& n (t.value);
// Note that we may have if without else and switch without default.
// We treat such cases as if no recipe was specified (this can be
// handy if we want to provide a custom recipe but only on certain
// platforms or some such).
if (n == "if" || n == "if!")
{
parse_if_else (t, tt, true /* multi */, parse_block);
continue;
}
else if (n == "switch")
{
parse_switch (t, tt, true /* multi */, parse_block);
continue;
}
// Fall through.
}
if (tt != type::multi_lcbrace)
fail (t) << "expected recipe block instead of " << t;
// Fall through.
}
else
{
// Default is perform(update).
//
bs.push_back (metaopspec ("perform"));
bs.back ().push_back (opspec ("update"));
}
parse_block (t, tt, false /* skip */, "" /* kind */);
}
// If we have a recipe that needs cleanup, register an operation callback
// for this project unless it has already been done.
//
if (clean)
{
action a (perform_clean_id);
auto f (&adhoc_rule::clean_recipes_build);
// First check if we have already done this.
//
auto p (root_->operation_callbacks.equal_range (a));
for (; p.first != p.second; ++p.first)
{
auto t (
p.first->second.pre.target<scope::operation_callback::callback*> ());
if (t != nullptr && *t == f)
break;
}
// It feels natural to clean up recipe builds as a post operation but
// that prevents the (otherwise-empty) out root directory to be cleaned
// up (via the standard fsdir{} chain).
//
if (p.first == p.second)
root_->operation_callbacks.emplace (
a, scope::operation_callback {f, nullptr /*post*/});
}
}
vector<reference_wrapper<target>> parser::
enter_adhoc_members (adhoc_names_loc&& ans, bool implied)
{
tracer trace ("parser::enter_adhoc_members", &path_);
vector<reference_wrapper<target>> r;
r.reserve (ans.ns.size ());
names& ns (ans.ns);
const location& loc (ans.loc);
for (size_t i (0); i != ns.size (); ++i)
{
name&& n (move (ns[i]));
name&& o (n.pair ? move (ns[++i]) : name ());
if (n.qualified ())
fail (loc) << "project name in target " << n;
// We derive the path unless the target name ends with the '...' escape
// which here we treat as the "let the rule derive the path" indicator
// (see target::split_name() for details). This will only be useful for
// referring to ad hoc members that are managed by the group's matching
// rule. Note also that omitting '...' for such a member could be used
// to override the file name, provided the rule checks if the path has
// already been derived before doing it itself.
//
bool escaped;
{
const string& v (n.value);
size_t p (v.size ());
escaped = (p > 3 &&
v[--p] == '.' && v[--p] == '.' && v[--p] == '.' &&
v[--p] != '.');
}
target& at (
enter_target::insert_target (*this,
move (n), move (o),
implied,
loc, trace));
if (target_ == &at)
fail (loc) << "ad hoc group member " << at << " is primary target";
// Add as an ad hoc member at the end of the chain skipping duplicates.
//
{
const_ptr<target>* mp (&target_->adhoc_member);
for (; *mp != nullptr; mp = &(*mp)->adhoc_member)
{
if (*mp == &at)
{
mp = nullptr;
break;
}
}
if (mp != nullptr)
{
*mp = &at;
at.group = target_;
}
}
if (!escaped)
{
if (file* ft = at.is_a<file> ())
ft->derive_path ();
}
r.push_back (at);
}
return r;
}
small_vector<pair<reference_wrapper<target>,
vector<reference_wrapper<target>>>, 1> parser::
enter_targets (names&& tns, const location& tloc, // Target names.
adhoc_names&& ans, // Ad hoc target names.
size_t prereq_size,
const attributes& tas) // Target attributes.
{
// Enter all the targets (normally we will have just one) and their ad hoc
// groups.
//
tracer trace ("parser::enter_targets", &path_);
small_vector<pair<reference_wrapper<target>,
vector<reference_wrapper<target>>>, 1> tgs;
for (size_t i (0); i != tns.size (); ++i)
{
name&& n (move (tns[i]));
name&& o (n.pair ? move (tns[++i]) : name ());
if (n.qualified ())
fail (tloc) << "project name in target " << n;
// Make sure none of our targets are patterns.
//
if (n.pattern)
fail (tloc) << "unexpected pattern in target " << n <<
info << "ad hoc pattern rule may not be combined with other "
<< "targets or patterns";
enter_target tg (*this,
move (n), move (o),
false /* implied */,
tloc, trace);
if (!tas.empty ())
apply_target_attributes (*target_, tas);
// Enter ad hoc members.
//
vector<reference_wrapper<target>> ams;
if (!ans.empty ())
{
// Note: index after the pair increment.
//
ams = enter_adhoc_members (move (ans[i]), false /* implied */);
}
if (default_target_ == nullptr)
default_target_ = target_;
target_->prerequisites_state_.store (2, memory_order_relaxed);
target_->prerequisites_.reserve (prereq_size);
tgs.emplace_back (*target_, move (ams));
}
return tgs;
}
void parser::
apply_target_attributes (target& t, const attributes& as)
{
const location& l (as.loc);
for (auto& a: as)
{
const string& n (a.name);
const value& v (a.value);
// rule_hint=
// liba@rule_hint=
//
size_t p (string::npos);
if (n == "rule_hint" ||
((p = n.find ('@')) != string::npos &&
n.compare (p + 1, string::npos, "rule_hint") == 0))
{
// Resolve target type, if specified.
//
const target_type* tt (nullptr);
if (p != string::npos)
{
string t (n, 0, p);
tt = scope_->find_target_type (t);
if (tt == nullptr)
fail (l) << "unknown target type " << t << " in rule_hint "
<< "attribute";
}
// The rule hint value is vector<pair<optional<string>, string>> where
// the first half is the operation and the second half is the hint.
// Absent operation is used as a fallback for update/clean.
//
const names& ns (v.as<names> ());
for (auto i (ns.begin ()); i != ns.end (); ++i)
{
operation_id oi (default_id);
if (i->pair)
{
const name& n (*i++);
if (!n.simple ())
fail (l) << "expected operation name instead of " << n
<< " in rule_hint attribute";
const string& v (n.value);
if (!v.empty ())
{
oi = ctx->operation_table.find (v);
if (oi == 0)
fail (l) << "unknown operation " << v << " in rule_hint "
<< "attribute";
if (root_->root_extra->operations[oi] == nullptr)
fail (l) << "project " << *root_ << " does not support "
<< "operation " << ctx->operation_table[oi]
<< " specified in rule_hint attribute";
}
}
const name& n (*i);
if (!n.simple () || n.empty ())
fail (l) << "expected hint instead of " << n << " in rule_hint "
<< "attribute";
t.rule_hints.insert (tt, oi, n.value);
}
}
else
fail (l) << "unknown target attribute " << a;
}
}
void parser::
parse_dependency (token& t, token_type& tt,
names&& tns, const location& tloc, // Target names.
adhoc_names&& ans, // Ad hoc target names.
names&& pns, const location& ploc, // Prereq names.
const attributes& tas) // Target attributes.
{
// Parse a dependency chain and/or a target/prerequisite-specific variable
// assignment/block and/or recipe block(s).
//
// enter: colon or newline (latter only in recursive calls)
// leave: - first token on the next line
//
tracer trace ("parser::parse_dependency", &path_);
// Diagnose conditional prerequisites. Note that we want to diagnose this
// even if pns is empty (think empty variable expansion; the literal "no
// prerequisites" case is handled elsewhere).
//
// @@ TMP For now we only do it during the dist meta-operation. In the
// future we should tighten this to any meta-operation provided
// the dist module is loaded.
//
// @@ TMP For now it's a warning because we have dependencies like
// cli.cxx{foo}: cli{foo} which are not currently possible to
// rewrite (cli.cxx{} is not always registered).
//
if (condition_ &&
ctx->current_mif != nullptr &&
ctx->current_mif->id == dist_id)
{
// Only issue the warning for the projects being distributed. In
// particular, this makes sure we don't complain about imported
// projects. Note: use amalgamation to cover bundled subprojects.
//
auto* dm (root_->bundle_scope ()->find_module<dist::module> (
dist::module::name));
if (dm != nullptr && dm->distributed)
{
warn (tloc) << "conditional dependency declaration may result in "
<< "incomplete distribution" <<
info (ploc) << "prerequisite declared here" <<
info (*condition_) << "conditional buildfile fragment starts here" <<
info << "instead use 'include' prerequisite-specific variable to "
<< "conditionally include prerequisites" <<
info << "for example: "
<< "<target>: <prerequisite>: include = (<condition>)" <<
info << "for details, see https://github.com/build2/HOWTO/blob/"
<< "master/entries/keep-build-graph-config-independent.md";
}
}
// First enter all the targets.
//
small_vector<pair<reference_wrapper<target>,
vector<reference_wrapper<target>>>, 1>
tgs (enter_targets (move (tns), tloc, move (ans), pns.size (), tas));
// Now enter each prerequisite into each target.
//
for (auto i (pns.begin ()); i != pns.end (); ++i)
{
// We cannot reuse the names if we (potentially) may need to pass them
// as targets in case of a chain (see below).
//
name n (tt != type::colon ? move (*i) : *i);
// See also scope::find_prerequisite_key().
//
auto rp (scope_->find_target_type (n, ploc));
const target_type* t (rp.first);
optional<string>& e (rp.second);
if (t == nullptr)
fail (ploc) << "unknown target type " << n.type;
// Current dir collapses to an empty one.
//
if (!n.dir.empty ())
n.dir.normalize (false /* actual */, true);
// @@ OUT: for now we assume the prerequisite's out is undetermined. The
// only way to specify an src prerequisite will be with the explicit
// @-syntax.
//
// Perhaps use @file{foo} as a way to specify it is in the out tree,
// e.g., to suppress any src searches? The issue is what to use for such
// a special indicator. Also, one can easily and natually suppress any
// searches by specifying the absolute path.
//
name o;
if (n.pair)
{
assert (n.pair == '@');
++i;
o = tt != type::colon ? move (*i) : *i;
if (!o.directory ())
fail (ploc) << "expected directory after '@'";
o.dir.normalize (); // Note: don't collapse current to empty.
// Make sure out and src are parallel unless both were specified as
// absolute. We make an exception for this case because out may be
// used to "tag" imported targets (see cc::search_library()). So it's
// sort of the "I know what I am doing" escape hatch (it would have
// been even better to verify such a target is outside any project
// but that won't be cheap).
//
// For now we require that both are either relative or absolute.
//
// See similar code for targets in scope::find_target_type().
//
if (n.dir.absolute () && o.dir.absolute ())
;
else if (n.dir.empty () && o.dir.current ())
;
else if (o.dir.relative () &&
n.dir.relative () &&
o.dir == n.dir)
;
else
fail (ploc) << "prerequisite output directory " << o.dir
<< " must be parallel to source directory " << n.dir;
}
prerequisite p (move (n.proj),
*t,
move (n.dir),
move (o.dir),
move (n.value),
move (e),
*scope_);
for (auto i (tgs.begin ()), e (tgs.end ()); i != e; )
{
// Move last prerequisite (which will normally be the only one).
//
target& t (i->first);
t.prerequisites_.push_back (++i == e
? move (p)
: prerequisite (p, memory_order_relaxed));
}
}
// Call the specified parsing function (either variable or block) for each
// target in tgs (for_each_t) or for the last pns.size() prerequisites of
// each target (for_each_p).
//
// We handle multiple targets and/or prerequisites by replaying the tokens
// (see the target-specific case comments for details). The function
// signature is:
//
// void (token& t, type& tt)
//
auto for_each_t = [this, &t, &tt, &tgs] (auto&& f)
{
// We need replay if we have multiple targets or ad hoc members.
//
replay_guard rg (*this, tgs.size () > 1 || !tgs[0].second.empty ());
for (auto ti (tgs.begin ()), te (tgs.end ()); ti != te; )
{
target& tg (ti->first);
const vector<reference_wrapper<target>>& ams (ti->second);
{
enter_target g (*this, tg);
f (t, tt, false);
}
for (target& am: ams)
{
rg.play (); // Replay.
enter_target g (*this, am);
f (t, tt, true);
}
if (++ti != te)
rg.play (); // Replay.
}
};
auto for_each_p = [this, &t, &tt, &tgs, &pns] (auto&& f)
{
replay_guard rg (*this, tgs.size () > 1 || pns.size () > 1);
for (auto ti (tgs.begin ()), te (tgs.end ()); ti != te; )
{
target& tg (ti->first);
enter_target g (*this, tg);
for (size_t pn (tg.prerequisites_.size ()), pi (pn - pns.size ());
pi != pn; )
{
enter_prerequisite pg (*this, tg.prerequisites_[pi]);
f (t, tt);
if (++pi != pn)
rg.play (); // Replay.
}
if (++ti != te)
rg.play (); // Replay.
}
};
// Do we have a dependency chain and/or prerequisite-specific variable
// assignment/block? If not, check for the target-specific variable block
// and/or recipe block(s).
//
if (tt != type::colon)
{
next_after_newline (t, tt); // Must be a newline then.
// Note: watch out for non-block cases like this:
//
// foo: bar
// {hxx ixx}: install = true
//
if (tt == type::percent ||
tt == type::multi_lcbrace ||
(tt == type::lcbrace && peek () == type::newline))
{
// Parse the block(s) for each target.
//
// Note: similar code to the version in parse_clause().
//
auto parse = [
this,
st = token (t), // Save start token (will be gone on replay).
recipes = small_vector<shared_ptr<adhoc_rule>, 1> ()]
(token& t, type& tt, bool am) mutable
{
token rt; // Recipe start token.
// The variable block, if any, should be first.
//
if (st.type == type::lcbrace)
{
next (t, tt); // Newline.
next (t, tt); // First token inside the variable block.
parse_variable_block (t, tt);
if (tt != type::rcbrace)
fail (t) << "expected '}' instead of " << t;
next (t, tt); // Newline.
next_after_newline (t, tt, '}'); // Should be on its own line.
if (tt != type::percent && tt != type::multi_lcbrace)
return;
rt = t;
}
else
rt = st;
// If this is an ad hoc group member then we know we are
// replaying and can skip the recipe.
//
if (am)
{
replay_skip ();
next (t, tt);
return;
}
parse_recipe (t, tt, rt, recipes);
};
for_each_t (parse);
}
return;
}
// If we are here, then this can be one of three things:
//
// 1. A prerequisite-specific variable bloc:
//
// foo: bar:
// {
// x = y
// }
//
// 2. A prerequisite-specific variable asignment:
//
// foo: bar: x = y
//
// 3. A further dependency chain:
//
// foo: bar: baz ...
//
// What should we do if there are no prerequisites, for example, because
// of an empty wildcard result or empty variable expansion? We can fail or
// we can ignore. In most cases, however, this is probably an error (for
// example, forgetting to checkout a git submodule) so let's not confuse
// the user and fail (one can always handle the optional prerequisites
// case with a variable and an if).
//
// On the other hand, we allow just empty prerequisites (which is also the
// more common case by far) and so it's strange that we don't allow the
// same with, say, `include = false`:
//
// exe{foo}: cxx{$empty} # Ok.
// exe{foo}: cxx{$empty}: include = false # Not Ok?
//
// So let's ignore in the first two cases (variable block and assignment)
// for consistency. The dependency chain is iffy both conceptually and
// implementation-wise (it could be followed by a variable block). So
// let's keep it an error for now.
//
// Note that the syntactically-empty prerequisite list is still an error:
//
// exe{foo}: : include = false # Error.
//
next_with_attributes (t, tt); // Recognize attributes after `:`.
auto at (attributes_push (t, tt));
if (tt == type::newline || tt == type::eos)
{
attributes_pop (); // Must be none since can't be standalone.
// There must be a block.
//
if (next_after_newline (t, tt) != type::lcbrace)
fail (t) << "expected '{' instead of " << t;
if (next (t, tt) != type::newline)
fail (t) << "expected newline after '{'";
// Parse the block for each prerequisites of each target.
//
if (!pns.empty ())
for_each_p ([this] (token& t, token_type& tt)
{
next (t, tt); // First token inside the block.
parse_variable_block (t, tt);
if (tt != type::rcbrace)
fail (t) << "expected '}' instead of " << t;
});
else
{
skip_block (t, tt);
if (tt != type::rcbrace)
fail (t) << "expected '}' instead of " << t;
}
next (t, tt); // Presumably newline after '}'.
next_after_newline (t, tt, '}'); // Should be on its own line.
}
else
{
// @@ PAT: currently we pattern-expand prerequisite-specific vars.
//
const location loc (get_location (t));
names ns (parse_names (t, tt, pattern_mode::expand));
// Prerequisite-specific variable assignment.
//
if (tt == type::assign || tt == type::prepend || tt == type::append)
{
type at (tt);
const variable& var (parse_variable_name (move (ns), loc));
apply_variable_attributes (var);
// Parse the assignment for each prerequisites of each target.
//
if (!pns.empty ())
for_each_p ([this, &var, at] (token& t, token_type& tt)
{
parse_variable (t, tt, var, at);
});
else
skip_line (t, tt);
next_after_newline (t, tt);
// Check we don't also have a variable block:
//
// foo: bar: x = y
// {
// ...
// }
//
if (tt == type::lcbrace && peek () == type::newline)
fail (t) << "variable assignment block after variable assignment";
}
//
// Dependency chain.
//
else
{
if (pns.empty ())
fail (ploc) << "no prerequisites in dependency chain";
// @@ This is actually ambiguous: prerequisite or target attributes
// (or both or neither)? Perhaps this should be prerequisites for
// the same reason as below (these are prerequsites first).
//
if (at.first)
fail (at.second) << "attributes before prerequisites";
else
attributes_pop ();
// Note that we could have "pre-resolved" these prerequisites to
// actual targets or, at least, made their directories absolute. We
// don't do it for ease of documentation: with the current semantics
// we just say that the dependency chain is equivalent to specifying
// each dependency separately.
//
// Also note that supporting ad hoc target group specification in
// chains will be complicated. For example, what if prerequisites that
// have ad hoc targets don't end up being chained? Do we just silently
// drop them? Also, these are prerequsites first that happened to be
// reused as target names so perhaps it is the right thing not to
// support, conceptually.
//
parse_dependency (t, tt,
move (pns), ploc,
{} /* ad hoc target name */,
move (ns), loc,
attributes () /* target attributes */);
}
}
}
void parser::
source (istream& is, const path_name& in, const location& loc, bool deft)
{
tracer trace ("parser::source", &path_);
l5 ([&]{trace (loc) << "entering " << in;});
if (in.path != nullptr)
enter_buildfile (*in.path);
const path_name* op (path_);
path_ = ∈
lexer l (is, *path_);
lexer* ol (lexer_);
lexer_ = &l;
target* odt;
if (deft)
{
odt = default_target_;
default_target_ = nullptr;
}
token t;
type tt;
next (t, tt);
parse_clause (t, tt);
if (tt != type::eos)
fail (t) << "unexpected " << t;
if (deft)
{
process_default_target (t);
default_target_ = odt;
}
lexer_ = ol;
path_ = op;
l5 ([&]{trace (loc) << "leaving " << in;});
}
void parser::
parse_source (token& t, type& tt)
{
// The rest should be a list of buildfiles. Parse them as names in the
// value mode to get variable expansion and directory prefixes.
//
mode (lexer_mode::value, '@');
next (t, tt);
const location l (get_location (t));
names ns (tt != type::newline && tt != type::eos
? parse_names (t, tt, pattern_mode::expand, "path", nullptr)
: names ());
for (name& n: ns)
{
if (n.pair || n.qualified () || n.typed () || n.value.empty ())
fail (l) << "expected buildfile instead of " << n;
// Construct the buildfile path.
//
path p (move (n.dir));
p /= path (move (n.value));
// If the path is relative then use the src directory corresponding
// to the current directory scope.
//
if (scope_->src_path_ != nullptr && p.relative ())
p = scope_->src_path () / p;
p.normalize ();
try
{
ifdstream ifs (p);
source (ifs,
path_name (p),
get_location (t),
false /* default_target */);
}
catch (const io_error& e)
{
fail (l) << "unable to read buildfile " << p << ": " << e;
}
}
next_after_newline (t, tt);
}
void parser::
parse_include (token& t, type& tt)
{
tracer trace ("parser::parse_include", &path_);
if (stage_ == stage::boot)
fail (t) << "inclusion during bootstrap";
// The rest should be a list of buildfiles. Parse them as names in the
// value mode to get variable expansion and directory prefixes.
//
mode (lexer_mode::value, '@');
next (t, tt);
const location l (get_location (t));
names ns (tt != type::newline && tt != type::eos
? parse_names (t, tt, pattern_mode::expand, "path", nullptr)
: names ());
for (name& n: ns)
{
if (n.pair || n.qualified () || n.typed () || n.empty ())
fail (l) << "expected buildfile instead of " << n;
// Construct the buildfile path. If it is a directory, then append
// 'buildfile'.
//
path p (move (n.dir));
bool a;
if (n.value.empty ())
a = true;
else
{
a = path::traits_type::is_separator (n.value.back ());
try
{
p /= path (move (n.value));
}
catch (const invalid_path& e)
{
fail (l) << "invalid include path '" << e.path << "'";
}
}
if (a)
{
// This shouldn't happen but let's make sure.
//
if (root_->root_extra == nullptr)
fail (l) << "buildfile naming scheme is not yet known";
p /= root_->root_extra->buildfile_file;
}
l6 ([&]{trace (l) << "relative path " << p;});
// Determine new out_base.
//
dir_path out_base;
try
{
if (p.relative ())
{
out_base = scope_->out_path () / p.directory ();
out_base.normalize ();
}
else
{
p.normalize ();
// Make sure the path is in this project. Include is only meant
// to be used for intra-project inclusion (plus amalgamation).
//
bool in_out (false);
if (!p.sub (root_->src_path ()) &&
!(in_out = p.sub (root_->out_path ())))
fail (l) << "out of project include " << p;
out_base = in_out
? p.directory ()
: out_src (p.directory (), *root_);
}
}
catch (const invalid_path&)
{
// The failure reason can only be the specified 'go past the root'
// path. Let's print the original path.
//
fail (l) << "invalid include path '" << (a ? p.directory () : p)
<< "'";
}
// Switch the scope. Note that we need to do this before figuring
// out the absolute buildfile path since we may switch the project
// root and src_root with it (i.e., include into a sub-project).
//
enter_scope sg (*this, out_base, true /* absolute & normalized */);
if (root_ == nullptr)
fail (l) << "out of project include from " << out_base;
// Use the new scope's src_base to get absolute buildfile path if it is
// relative.
//
if (p.relative ())
p = scope_->src_path () / p.leaf ();
l6 ([&]{trace (l) << "absolute path " << p;});
if (!root_->buildfiles.insert (p).second) // Note: may be "new" root.
{
l5 ([&]{trace (l) << "skipping already included " << p;});
continue;
}
// Clear/restore if/switch location.
//
// We do it here but not in parse_source since the included buildfile is
// in a sense expected to be a standalone entity (think a file included
// from an export stub).
//
auto g = make_guard ([this, old = condition_] () mutable
{
condition_ = old;
});
condition_ = nullopt;
try
{
ifdstream ifs (p);
source (ifs,
path_name (p),
get_location (t),
true /* default_target */);
}
catch (const io_error& e)
{
fail (l) << "unable to read buildfile " << p << ": " << e;
}
}
next_after_newline (t, tt);
}
void parser::
parse_run (token& t, type& tt)
{
// run <name> [<arg>...]
//
// Note that if the result of executing the program can be affected by
// environment variables and this result can in turn affect the build
// result, then such variables should be reported with the
// config.environment directive.
// Parse the command line as names in the value mode to get variable
// expansion, etc.
//
mode (lexer_mode::value);
next (t, tt);
const location l (get_location (t));
strings args;
try
{
args = convert<strings> (
tt != type::newline && tt != type::eos
? parse_names (t, tt, pattern_mode::expand, "argument", nullptr)
: names ());
}
catch (const invalid_argument& e)
{
fail (l) << "invalid run argument: " << e.what ();
}
if (args.empty () || args[0].empty ())
fail (l) << "expected executable name after run";
cstrings cargs;
cargs.reserve (args.size () + 1);
transform (args.begin (),
args.end (),
back_inserter (cargs),
[] (const string& s) {return s.c_str ();});
cargs.push_back (nullptr);
// Note: we are in the serial load phase and so no diagnostics buffering
// is needed.
//
process pr (run_start (3 /* verbosity */,
cargs,
0 /* stdin */,
-1 /* stdout */,
2 /* stderr */,
nullptr /* env */,
dir_path () /* cwd */,
l));
try
{
// While a failing process could write garbage to stdout, for simplicity
// let's assume it is well behaved.
//
ifdstream is (move (pr.in_ofd), fdstream_mode::skip);
// If there is an error in the output, our diagnostics will look like
// this:
//
// <stdout>:2:3 error: unterminated single quote
// buildfile:3:4 info: while parsing foo output
//
{
auto df = make_diag_frame (
[this, &args, &l](const diag_record& dr)
{
dr << info (l) << "while parsing " << args[0] << " output";
});
source (is,
path_name ("<stdout>"),
l,
false /* default_target */);
}
is.close (); // Detect errors.
}
catch (const io_error& e)
{
if (run_wait (cargs, pr, l))
fail (l) << "io error reading " << cargs[0] << " output: " << e;
// If the child process has failed then assume the io error was
// caused by that and let run_finish() deal with it.
}
run_finish (cargs, pr, 2 /* verbosity */, false /* omit_normal */, l);
next_after_newline (t, tt);
}
void parser::
parse_config (token& t, type& tt)
{
tracer trace ("parser::parse_config", &path_);
// General config format:
//
// config [<var-attrs>] <var>[?=[<val-attrs>]<default-val>]
//
// Make sure only appears in root.build.
//
if (stage_ != stage::root)
fail (t) << "configuration variable outside of project's "
<< root_->root_extra->root_file;
// Enforce the config.<project> prefix.
//
// Note that this could be a subproject and it could be unnamed (e.g., the
// tests subproject). The current thinking is to use hierarchical names
// like config.<project>.tests.remote for subprojects, similar to how we
// do the same for submodules (e.g., cxx.config). Of course, the
// subproject could also be some named third-party top-level project that
// we just happened to amalgamate. So what we are going to do is enforce
// the config[.**].<project>.** pattern where <project> is the innermost
// named project.
//
// Note that we also allow just the config.<project> name which can be
// used by tools (such as source code generators) that use themselves in
// their own build. This is a bit of an advanced/experimental setup so
// we leave this undocumented for now.
//
// What should we do if there is no named project? We used to fail but
// there are valid cases where this can happen, for example, a standalone
// build of an unnamed tests subproject in order to test an installed
// library. Doing anything fuzzy like requiring at least a four-component
// name in this case is probably not worth the trouble: it's possible the
// subproject needs some configuration values from it amalgamation (in
// which case it will be duplicating them in its root.build file). So
// for now we allow this trusting the user knows what they are doing.
//
string proj;
{
const project_name& n (named_project (*root_));
if (!n.empty ())
proj = n.variable ();
}
const location loc (get_location (t));
// We are now in the normal lexing mode and we let the lexer handle `?=`.
//
next_with_attributes (t, tt);
// Get variable attributes, if any, and deal with the special config.*
// attributes as well as null. Since currently they can only appear in the
// config directive, we handle them in an ad hoc manner.
//
attributes_push (t, tt);
attributes& as (attributes_top ());
bool nullable (false);
optional<string> report;
string report_var;
for (auto i (as.begin ()); i != as.end (); )
{
if (i->name == "null")
{
nullable = true;
}
else if (i->name == "config.report")
{
try
{
string v (i->value ? convert<string> (move (i->value)) : "true");
if (v == "true" ||
v == "false" ||
v == "multiline")
report = move (v);
else
throw invalid_argument (
"expected 'false' or format name instead of '" + v + '\'');
}
catch (const invalid_argument& e)
{
fail (as.loc) << "invalid " << i->name << " attribute value: " << e;
}
}
else if (i->name == "config.report.variable")
{
try
{
report_var = convert<string> (move (i->value));
}
catch (const invalid_argument& e)
{
fail (as.loc) << "invalid " << i->name << " attribute value: " << e;
}
}
else
{
++i;
continue;
}
i = as.erase (i);
}
if (tt != type::word)
fail (t) << "expected configuration variable name instead of " << t;
string name (move (t.value));
bool config (name.compare (0, 7, "config.") == 0);
// As a way to print custom (discovered, computed, etc) configuration
// information we allow specifying a non config.* variable provided it is
// explicitly marked with the config.report attribute.
//
bool new_val (false);
lookup l;
if (report && *report != "false" && !config)
{
if (!as.empty () || nullable)
fail (as.loc) << "unexpected attributes for report-only variable";
attributes_pop ();
// Reduce to the config.report.variable-like situation.
//
// What should new_val be? If it's based on a config.* variable (for
// example, some paths extracted from a tool), then it's natural for
// that variable to control newness. And if it's not based on any
// config.* variable, then whether it's always new or never new is a
// philosophical question. In either case it doesn't seem useful for it
// to unconditionally force reporting at level 2.
//
report_var = move (name);
next (t, tt); // We shouldn't have the default value part.
}
else
{
if (!report)
report = "true"; // Default is to report.
// Enforce the variable name pattern. The simplest is to check for the
// config prefix and the project substring.
//
{
diag_record dr;
if (!config)
dr << fail (t) << "configuration variable '" << name
<< "' does not start with 'config.'";
if (!proj.empty ())
{
size_t p (name.find ('.' + proj));
if (p == string::npos ||
((p += proj.size () + 1) != name.size () && // config.<proj>
name[p] != '.')) // config.<proj>.
{
dr << fail (t) << "configuration variable '" << name
<< "' does not include project name";
}
}
if (!dr.empty ())
dr << info << "expected variable name in the 'config[.**]."
<< (proj.empty () ? "<project>" : proj.c_str ()) << ".**' form";
}
const variable& var (
parse_variable_name (move (name), get_location (t)));
apply_variable_attributes (var);
// Note that even though we are relying on the config.** variable
// pattern to set global visibility, let's make sure as a sanity check.
//
if (var.visibility != variable_visibility::global)
{
fail (t) << "configuration variable " << var << " has "
<< var.visibility << " visibility";
}
// See if we have the default value part.
//
next (t, tt);
bool def_val (tt != type::newline && tt != type::eos);
if (def_val && tt != type::default_assign)
fail (t) << "expected '?=' instead of " << t << " after "
<< "configuration variable name";
// If this is the special config.<project>.develop variable, verify it
// is of type bool and has false as the default value. We also only save
// it in config.build if it's true and suppress any unused warnings in
// config::save_config() if specified but not used by the project.
//
// Here we also have the unnamed project issues (see above for details)
// and so we actually recognize any config.**.develop.
//
bool dev;
{
size_t p (var.name.rfind ('.'));
dev = p != 6 && var.name.compare (p + 1, string::npos, "develop") == 0;
}
uint64_t sflags (0);
if (dev)
{
if (var.type != &value_traits<bool>::value_type)
fail (loc) << var << " variable must be of type bool";
// This is quite messy: below we don't always parse the value (plus it
// may be computed) so here we just peek at the next token. But we
// have to do this in the same mode as parse_variable_value().
//
if (!def_val ||
peek (lexer_mode::value, '@') != type::word ||
peeked ().value != "false")
fail (loc) << var << " variable default value must be literal false";
if (nullable)
fail (loc) << var << " variable must not be nullable";
sflags |= config::save_false_omitted;
}
// We have to lookup the value whether we have the default part or not
// in order to mark it as saved. We also have to do this to get the new
// value status.
//
l = config::lookup_config (new_val, *root_, var, sflags);
// Handle the default value.
//
if (def_val)
{
// The rest is the default value which we should parse in the value
// mode. But before switching check whether we need to evaluate it at
// all.
//
if (l.defined ())
{
// Peek at the attributes to detect whether the value is NULL.
//
if (!dev && !nullable)
{
// Essentially a prefix of parse_variable_value().
//
mode (lexer_mode::value, '@');
next_with_attributes (t, tt);
attributes_push (t, tt, true);
for (const attribute& a: attributes_pop ())
{
if (a.name == "null")
{
nullable = true;
break;
}
}
}
skip_line (t, tt);
}
else
{
value lhs, rhs (parse_variable_value (t, tt, !dev /* mode */));
apply_value_attributes (&var, lhs, move (rhs), type::assign);
if (!nullable)
nullable = lhs.null;
l = config::lookup_config (new_val, *root_, var, move (lhs), sflags);
}
}
// If the variable is not nullable, verify the value is not NULL.
//
// Note that undefined is not the same as NULL (if it is undefined, we
// should either see the default value or if there is no default value,
// then the user is expected to handle the undefined case).
//
if (!nullable && l.defined () && l->null)
fail (loc) << "null value in non-nullable variable " << var;
}
// We will be printing the report at either level 2 (-v) or 3 (-V)
// depending on the final value of config_report_new.
//
// Note that for the config_report_new calculation we only incorporate
// variables that we are actually reporting.
//
if (*report != "false" && verb >= 2)
{
// We don't want to lookup the report variable value here since it's
// most likely not set yet.
//
if (!report_var.empty ())
{
// In a somewhat hackish way we pass the variable in an undefined
// lookup.
//
// Note: consistent with parse_variable_name() wrt overridability.
//
l = lookup ();
l.var = &root_->var_pool ().insert (
move (report_var),
report_var.find ('.') != string::npos /* overridable */);
}
if (l.var != nullptr)
{
auto r (make_pair (l, move (*report)));
// If we have a duplicate, update it (it could be useful to have
// multiple config directives to "probe" the value before calculating
// the default; see lookup_config() for details).
//
auto i (find_if (config_report.begin (),
config_report.end (),
[&l] (const pair<lookup, string>& p)
{
return p.first.var == l.var;
}));
if (i == config_report.end ())
config_report.push_back (move (r));
else
*i = move (r);
config_report_new = config_report_new || new_val;
}
}
next_after_newline (t, tt);
}
void parser::
parse_config_environment (token& t, type& tt)
{
// config.environment <name>...
//
// While we could allow this directive during bootstrap, it would have to
// be after loading the config module, which can be error prone. So we
// disallow it for now (it's also not clear "configuring" bootstrap with
// environment variables is a good idea; think of info, etc).
//
if (stage_ == stage::boot)
fail (t) << "config.environment during bootstrap";
// Parse the rest as names in the value mode to get variable expansion,
// etc.
//
mode (lexer_mode::value);
next (t, tt);
const location l (get_location (t));
strings ns;
try
{
ns = convert<strings> (
tt != type::newline && tt != type::eos
? parse_names (t, tt,
pattern_mode::ignore,
"environment variable name",
nullptr)
: names ());
}
catch (const invalid_argument& e)
{
fail (l) << "invalid environment variable name: " << e.what ();
}
config::save_environment (*root_, ns);
next_after_newline (t, tt);
}
void parser::
parse_import (token& t, type& tt)
{
tracer trace ("parser::parse_import", &path_);
if (stage_ == stage::boot)
fail (t) << "import during bootstrap";
// General import format:
//
// import[?!] [<attrs>] <var> = [<attrs>] (<target>|<project>%<target>])+
//
bool opt (t.value.back () == '?');
optional<string> ph2 (opt || t.value.back () == '!'
? optional<string> (string ())
: nullopt);
// We are now in the normal lexing mode and we let the lexer handle `=`.
//
next_with_attributes (t, tt);
// Get variable attributes, if any, and deal with the special metadata
// attribute. Since currently it can only appear in the import directive,
// we handle it in an ad hoc manner.
//
attributes_push (t, tt);
bool meta (false);
{
attributes& as (attributes_top ());
const location& l (as.loc);
for (auto i (as.begin ()); i != as.end (); )
{
const string& n (i->name);
value& v (i->value);
if (n == "metadata")
{
if (!ph2)
fail (l) << "loading metadata requires immediate import" <<
info << "consider using the import! directive instead";
meta = true;
}
else if (n == "rule_hint")
{
if (!ph2)
fail (l) << "rule hint can only be used with immediate import" <<
info << "consider using the import! directive instead";
// Here we only allow a single name.
//
try
{
ph2 = convert<string> (move (v));
if (ph2->empty ())
throw invalid_argument ("empty name");
}
catch (const invalid_argument& e)
{
fail (l) << "invalid " << n << " attribute value: " << e;
}
}
else
{
++i;
continue;
}
i = as.erase (i);
}
}
if (tt != type::word)
fail (t) << "expected variable name instead of " << t;
const variable& var (
parse_variable_name (move (t.value), get_location (t)));
apply_variable_attributes (var);
if (var.visibility > variable_visibility::scope)
{
fail (t) << "variable " << var << " has " << var.visibility
<< " visibility but is assigned in import";
}
// Next should come the assignment operator. Note that we don't support
// default assignment (?=) yet (could make sense when attempting to import
// alternatives or some such).
//
next (t, tt);
if (tt != type::assign && tt != type::append && tt != type::prepend)
fail (t) << "expected variable assignment instead of " << t;
type atype (tt);
value& val (atype == type::assign
? scope_->assign (var)
: scope_->append (var));
// The rest should be a list of targets. Parse them similar to a value on
// the RHS of an assignment (attributes, etc).
//
// Note that we expant patterns for the ad hoc import case:
//
// import sub = */
//
mode (lexer_mode::value, '@');
next_with_attributes (t, tt);
if (tt == type::newline || tt == type::eos)
fail (t) << "expected target to import instead of " << t;
const location loc (get_location (t));
if (value v = parse_value_with_attributes (t, tt, pattern_mode::expand))
{
names storage;
for (name& n: reverse (v, storage))
{
// @@ Could this be an out-qualified ad hoc import?
//
if (n.pair)
fail (loc) << "unexpected pair in import";
// import() will check the name, if required.
//
names r (import (*scope_, move (n), ph2, opt, meta, loc).first);
if (r.empty ()) // Optional not found.
{
if (atype == type::assign)
val = nullptr;
}
else
{
if (atype == type::assign)
val.assign (move (r), &var);
else if (atype == type::prepend)
val.prepend (move (r), &var);
else
val.append (move (r), &var);
}
if (atype == type::assign)
atype = type::append; // Append subsequent values.
}
}
next_after_newline (t, tt);
}
void parser::
parse_export (token& t, type& tt)
{
tracer trace ("parser::parse_export", &path_);
scope* ps (scope_->parent_scope ());
// This should be temp_scope.
//
if (ps == nullptr || ps->out_path () != scope_->out_path ())
fail (t) << "export outside export stub";
// The rest is a value. Parse it similar to a value on the RHS of an
// assignment to get expansion. While it may seem like supporting
// attributes is a good idea here, there is actually little benefit in
// being able to type them or to return NULL.
//
mode (lexer_mode::value, '@');
next_with_attributes (t, tt);
auto at (attributes_push (t, tt));
if (at.first)
fail (at.second) << "attributes in export";
else
attributes_pop ();
location l (get_location (t));
value val (tt != type::newline && tt != type::eos
? parse_value (t, tt, pattern_mode::expand)
: value (names ()));
if (!val)
fail (l) << "null value in export";
if (val.type != nullptr)
untypify (val);
export_value = move (val).as<names> ();
if (export_value.empty ())
fail (l) << "empty value in export";
next_after_newline (t, tt);
}
void parser::
parse_using (token& t, type& tt)
{
tracer trace ("parser::parse_using", &path_);
bool opt (t.value.back () == '?');
if (opt && stage_ == stage::boot)
fail (t) << "optional module in bootstrap";
// The rest should be a list of module names. Parse them as names in the
// value mode to get variable expansion, etc.
//
mode (lexer_mode::value, '@');
next (t, tt);
const location l (get_location (t));
names ns (tt != type::newline && tt != type::eos
? parse_names (t, tt, pattern_mode::ignore, "module", nullptr)
: names ());
for (auto i (ns.begin ()); i != ns.end (); ++i)
{
string n;
optional<standard_version> v;
if (!i->simple ())
fail (l) << "expected module name instead of " << *i;
n = move (i->value);
if (n[0] == '_')
fail (l) << "module name '" << n << "' starts with underscore";
if (i->pair)
try
{
if (i->pair != '@')
fail (l) << "unexpected pair style in using directive";
++i;
if (!i->simple ())
fail (l) << "expected module version instead of " << *i;
v = standard_version (i->value, standard_version::allow_earliest);
}
catch (const invalid_argument& e)
{
fail (l) << "invalid module version '" << i->value << "': " << e;
}
// Handle the special 'build' and 'build2' modules.
//
if (n == "build2" || n == "build")
{
if (v)
{
standard_version_constraint c (move (v), false, nullopt, true); // >=
check_build_version (c, l);
}
}
else
{
assert (!v); // Module versioning not yet implemented.
if (stage_ == stage::boot)
boot_module (*root_, n, l);
else
init_module (*root_, *scope_, n, l, opt);
}
}
next_after_newline (t, tt);
}
void parser::
parse_define (token& t, type& tt)
{
// define <derived>: <base>
//
// See tests/define.
//
if (next (t, tt) != type::word)
fail (t) << "expected name instead of " << t << " in target type "
<< "definition";
string dn (move (t.value));
const location dnl (get_location (t));
if (next (t, tt) != type::colon)
fail (t) << "expected ':' instead of " << t << " in target type "
<< "definition";
next (t, tt);
if (tt == type::word)
{
// Target.
//
const string& bn (t.value);
const target_type* bt (scope_->find_target_type (bn));
if (bt == nullptr)
fail (t) << "unknown target type " << bn;
if (!root_->derive_target_type (move (dn), *bt).second)
fail (dnl) << "target type " << dn << " already defined in this "
<< "project";
next (t, tt); // Get newline.
}
else
fail (t) << "expected name instead of " << t << " in target type "
<< "definition";
next_after_newline (t, tt);
}
void parser::
parse_if_else (token& t, type& tt)
{
auto g = make_guard ([this, old = condition_] () mutable
{
condition_ = old;
});
condition_ = get_location (t);
parse_if_else (t, tt,
false /* multi */,
[this] (token& t, type& tt, bool s, const string& k)
{
return parse_clause_block (t, tt, s, k);
});
}
void parser::
parse_if_else (token& t, type& tt,
bool multi,
const function<void (
token&, type&, bool, const string&)>& parse_block)
{
// Handle the whole if-else chain. See tests/if-else.
//
bool taken (false); // One of the branches has been taken.
for (;;)
{
string k (move (t.value));
next_with_attributes (t, tt); // Recognize attributes before value.
bool take (false); // Take this branch?
if (k != "else")
{
// Should we evaluate the expression if one of the branches has
// already been taken? On the one hand, evaluating it is a waste
// of time. On the other, it can be invalid and the only way for
// the user to know their buildfile is valid is to test every
// branch. There could also be side effects. We also have the same
// problem with ignored branch blocks except there evaluating it
// is not an option. So let's skip it.
//
if (taken)
skip_line (t, tt);
else
{
if (tt == type::newline || tt == type::eos)
fail (t) << "expected " << k << "-expression instead of " << t;
// Parse the condition similar to a value on the RHS of an
// assignment (expansion, attributes). While at this stage the
// attribute's usefulness in this context is not entirely clear, we
// allow it for consistency with other similar directives (switch,
// for) and also who knows what attributes we will have in the
// future (maybe there will be a way to cast 0/[null] to bool, for
// example).
//
// Note also that we expand patterns (they could be used in nested
// contexts, etc; e.g., "if pattern expansion is empty" condition).
//
const location l (get_location (t));
try
{
// Should evaluate to 'true' or 'false'.
//
bool e (
convert<bool> (
parse_value_with_attributes (t, tt,
pattern_mode::expand,
"expression",
nullptr)));
take = (k.back () == '!' ? !e : e);
}
catch (const invalid_argument& e) { fail (l) << e; }
}
}
else
take = !taken;
if (tt != type::newline)
fail (t) << "expected newline instead of " << t << " after " << k
<< (k != "else" ? "-expression" : "");
// This can be a block (single or multi-curly) or a single line. The
// single-curly block is a bit tricky, consider:
//
// else
// {hxx cxx}{options}: install = false
//
// So we treat it as a block if it's followed immediately by newline.
//
// Note: identical code in parse_switch().
//
next (t, tt);
if (multi
? (tt == type::multi_lcbrace)
: (tt == type::lcbrace && peek () == type::newline))
{
parse_block (t, tt, !take, k);
taken = taken || take;
}
else if (!multi) // No lines in multi-curly if-else.
{
if (take)
{
if (!parse_clause (t, tt, true))
fail (t) << "expected " << k << "-line instead of " << t;
taken = true;
}
else
{
skip_line (t, tt);
if (tt == type::newline)
next (t, tt);
}
}
else
fail (t) << "expected " << k << "-block instead of " << t;
// See if we have another el* keyword.
//
// Note that we cannot do the keyword test if we are replaying. So we
// skip it with the understanding that if it's not a keywords, then we
// wouldn't have gotten here on the reply (see parse_recipe() for
// details).
//
if (k != "else" &&
tt == type::word &&
(replay_ == replay::play || keyword (t)))
{
const string& n (t.value);
if (n == "else" || n == "elif" || n == "elif!")
continue;
}
break;
}
}
void parser::
parse_switch (token& t, type& tt)
{
auto g = make_guard ([this, old = condition_] () mutable
{
condition_ = old;
});
condition_ = get_location (t);
parse_switch (t, tt,
false /* multi */,
[this] (token& t, type& tt, bool s, const string& k)
{
return parse_clause_block (t, tt, s, k);
});
}
void parser::
parse_switch (token& t, type& tt,
bool multi,
const function<void (
token&, type&, bool, const string&)>& parse_block)
{
// switch <value> [: <func> [<arg>]] [, <value>...]
// {
// case <pattern> [, <pattern>...]
// <line>
//
// case <pattern> [, <pattern>...]
// {
// <block>
// }
//
// case <pattern> [, <pattern>...]
// ...
// case <pattern> [, <pattern>...]
// ...
//
// case <pattern> [| <pattern>... ]
//
// default
// ...
// }
assert (!pre_parse_); // Used to skip pattern alternatives.
// Parse and evaluate the values we are matching. Similar to if-else, we
// expand patterns.
//
struct expr
{
build2::value value;
optional<string> func;
names arg;
};
small_vector<expr, 1> exprs;
mode (lexer_mode::switch_expressions); // Recognize `:` and `,`.
do
{
next_with_attributes (t, tt); // Recognize attributes before value.
if (tt == type::newline || tt == type::eos)
fail (t) << "expected switch expression instead of " << t;
expr e;
e.value =
parse_value_with_attributes (t, tt,
pattern_mode::expand,
"expression",
nullptr);
if (tt == type::colon)
{
next (t, tt);
const location l (get_location (t));
names ns (parse_names (t, tt, pattern_mode::preserve, "function name"));
if (ns.empty () || ns[0].empty ())
fail (l) << "function name expected after ':'";
if (ns[0].pattern || !ns[0].simple ())
fail (l) << "function name expected instead of " << ns[0];
e.func = move (ns[0].value);
ns.erase (ns.begin ());
e.arg = move (ns);
}
exprs.push_back (move (e));
}
while (tt == type::comma);
next_after_newline (t, tt, "switch expression");
// Next we should always have a block.
//
if (tt != type::lcbrace)
fail (t) << "expected '{' instead of " << t << " after switch";
next (t, tt);
next_after_newline (t, tt, '{');
// Next we have zero or more `case` lines/blocks (potentially with
// multiple `case`s per line/block) optionally followed by the `default`
// lines/blocks followed by the closing `}`.
//
bool taken (false); // One of the case/default has been taken.
bool seen_default (false);
auto special = [&seen_default, this] (const token& t, const type& tt)
{
// Note that we cannot do the keyword test if we are replaying. So we
// skip it with the understanding that if it's not a keywords, then we
// wouldn't have gotten here on the reply (see parse_recipe() for
// details). Note that this appears to mean that replay cannot be used
// if we allow lines, only blocks. Consider:
//
// case ...
// case = x
//
// (We don't seem to have the same problem with if-else because there we
// always expect one line for if/else.)
//
// Idea: maybe we could save the result of the keyword test in a token
// to be replayed? (For example, if we ever decided to allow if-else and
// switch in variable blocks.)
//
if (tt == type::word && (replay_ == replay::play || keyword (t)))
{
if (t.value == "case")
{
if (seen_default)
fail (t) << "case after default" <<
info << "default must be last in the switch block";
return true;
}
else if (t.value == "default")
{
if (seen_default)
fail (t) << "multiple defaults";
seen_default = true;
return true;
}
// Fall through.
}
return false;
};
while (tt != type::eos)
{
if (tt == type::rcbrace)
break;
if (!special (t, tt))
fail (t) << "expected case or default instead of " << t;
string k (move (t.value));
bool take (false); // Take this case/default?
if (seen_default)
{
take = !taken;
next (t, tt);
}
else
{
// Similar to if-else we are not going to evaluate the case conditions
// if we are skipping.
//
if (taken)
skip_line (t, tt);
else
{
// Parse the patterns and match them against the values. Note that
// here we don't expand patterns in names.
//
mode (lexer_mode::case_patterns); // Recognize `|` and `,`.
auto parse_pattern_with_attributes = [this] (token& t, type& tt)
{
return parse_value_with_attributes (
t, tt, pattern_mode::ignore, "pattern", nullptr);
};
for (size_t i (0);; ++i)
{
// Recognize attributes before first pattern.
//
next_with_attributes (t, tt);
if (tt == type::newline || tt == type::eos)
fail (t) << "expected case pattern instead of " << t;
if (i == exprs.size ())
fail (t) << "more patterns than switch expressions";
// Handle pattern alternatives (<pattern>|<pattern>).
//
for (;;)
{
const location l (get_location (t));
value p (parse_pattern_with_attributes (t, tt));
expr& e (exprs[i]); // Note: value might be modified (typified).
if (e.func)
{
// Call <func>(<value>, <pattern> [, <arg>]).
//
small_vector<value, 3> args {value (e.value), move (p)};
if (!e.arg.empty ())
args.push_back (value (e.arg));
value r (ctx->functions.call (scope_, *e.func, args, l));
// We support two types of functions: matchers and extractors:
// a matcher returns a statically-typed bool value while an
// extractor returns NULL if there is no match and the
// extracted value otherwise.
//
if (r.type == &value_traits<bool>::value_type)
{
if (r.null)
fail (l) << "match function " << *e.func << " returned "
<< "null";
take = r.as<bool> ();
}
else
take = !r.null;
}
else
take = compare_values (type::equal, e.value, p, l);
if (tt != type::bit_or)
break;
if (take)
{
// Use the pre-parse mechanism to skip remaining alternatives.
//
pre_parse_ = true;
do
{
next_with_attributes (t, tt); // Skip `|`.
parse_pattern_with_attributes (t, tt);
}
while (tt == type::bit_or);
pre_parse_ = false;
break;
}
// Recognize attributes before next pattern.
//
next_with_attributes (t, tt);
}
if (!take)
{
skip_line (t, tt); // Skip the rest.
break;
}
// We reserve the ':' separator for possible future match
// extraction support:
//
// case '...': x
// info "$x"
//
if (tt == type::colon)
fail (t) << "unexpected ':' (match extraction is not yet "
<< "supported)";
if (tt != type::comma)
break;
}
}
}
next_after_newline (t, tt, seen_default ? "default" : "case pattern");
// This can be another `case` or `default`.
//
if (special (t, tt))
{
// If we are still looking for a match, simply restart from the
// beginning as if this were the first `case` or `default`.
//
if (!take && !taken)
{
seen_default = false;
continue;
}
// Otherwise, we need to skip this and all the subsequent special
// lines.
//
do
{
skip_line (t, tt);
next_after_newline (t, tt, seen_default ? "default" : "case pattern");
}
while (special (t, tt));
}
// Otherwise this must be a block (single or multi-curly) or a single
// line (the same logic as in if-else).
//
if (multi
? (tt == type::multi_lcbrace)
: (tt == type::lcbrace && peek () == type::newline))
{
parse_block (t, tt, !take, k);
taken = taken || take;
}
else if (!multi) // No lines in multi-curly if-else.
{
if (take)
{
if (!parse_clause (t, tt, true))
fail (t) << "expected " << k << "-line instead of " << t;
taken = true;
}
else
{
skip_line (t, tt);
if (tt == type::newline)
next (t, tt);
}
}
else
fail (t) << "expected " << k << "-block instead of " << t;
}
if (tt != type::rcbrace)
fail (t) << "expected '}' instead of " << t << " after switch-block";
next (t, tt); // Presumably newline after '}'.
next_after_newline (t, tt, '}'); // Should be on its own line.
}
void parser::
parse_for (token& t, type& tt)
{
// for [<var-attrs>] <varname> [<elem-attrs>]: [<val-attrs>] <value>
// <line>
//
// for [<var-attrs>] <varname> [<elem-attrs>]: [<val-attrs>] <value>
// {
// <block>
// }
// First take care of the variable name. There is no reason not to
// support variable attributes.
//
next_with_attributes (t, tt);
attributes_push (t, tt);
// Enable list element attributes.
//
enable_attributes ();
const location vloc (get_location (t));
names vns (parse_names (t, tt, pattern_mode::preserve));
const variable& var (parse_variable_name (move (vns), vloc));
apply_variable_attributes (var);
if (var.visibility > variable_visibility::scope)
{
fail (vloc) << "variable " << var << " has " << var.visibility
<< " visibility but is assigned in for-loop";
}
// Parse the list element attributes, if present.
//
attributes_push (t, tt);
if (tt != type::colon)
fail (t) << "expected ':' instead of " << t << " after variable name";
// Save element attributes so that we can inject them on each iteration.
//
attributes val_attrs (attributes_pop ());
// Now the value (list of names) to iterate over. Parse it similar to a
// value on the RHS of an assignment (expansion, attributes).
//
mode (lexer_mode::value, '@');
next_with_attributes (t, tt);
value val (parse_value_with_attributes (t, tt, pattern_mode::expand));
// If this value is a vector, then save its element type so that we
// can typify each element below.
//
const value_type* etype (nullptr);
if (val && val.type != nullptr)
{
etype = val.type->element_type;
untypify (val);
}
if (tt != type::newline)
fail (t) << "expected newline instead of " << t << " after for";
// Finally the body. The initial thought was to use the token replay
// facility but on closer inspection this didn't turn out to be a good
// idea (no support for nested replays, etc). So instead we are going to
// do a full-blown re-lex. Specifically, we will first skip the line/block
// just as we do for non-taken if/else branches while saving the character
// sequence that comprises the body. Then we re-lex/parse it on each
// iteration.
//
string body;
uint64_t line (lexer_->line); // Line of the first character to be saved.
lexer::save_guard sg (*lexer_, body);
// This can be a block or a single line, similar to if-else.
//
bool block (next (t, tt) == type::lcbrace && peek () == type::newline);
if (block)
{
next (t, tt); // Get newline.
next (t, tt);
skip_block (t, tt);
sg.stop ();
if (tt != type::rcbrace)
fail (t) << "expected '}' instead of " << t << " at the end of "
<< "for-block";
next (t, tt); // Presumably newline after '}'.
next_after_newline (t, tt, '}'); // Should be on its own line.
}
else
{
skip_line (t, tt);
sg.stop ();
if (tt == type::newline)
next (t, tt);
}
// Iterate.
//
value& lhs (scope_->assign (var)); // Assign even if no iterations.
if (!val)
return;
names& ns (val.as<names> ());
if (ns.empty ())
return;
istringstream is (move (body));
for (auto i (ns.begin ()), e (ns.end ());; )
{
// Set the variable value.
//
bool pair (i->pair);
names n;
n.push_back (move (*i));
if (pair) n.push_back (move (*++i));
value v (move (n));
if (etype != nullptr)
typify (v, *etype, &var);
// Inject element attributes.
//
attributes_.push_back (val_attrs);
apply_value_attributes (&var, lhs, move (v), type::assign);
lexer l (is, *path_, line);
lexer* ol (lexer_);
lexer_ = &l;
token t;
type tt;
next (t, tt);
if (block)
{
next (t, tt); // {
next (t, tt); // <newline>
}
parse_clause (t, tt);
if (tt != (block ? type::rcbrace : type::eos))
fail (t) << "expected name " << (block ? "or '}' " : "")
<< "instead of " << t;
lexer_ = ol;
if (++i == e)
break;
// Rewind the stream.
//
is.clear ();
is.seekg (0);
}
}
void parser::
parse_assert (token& t, type& tt)
{
bool neg (t.value.back () == '!');
const location al (get_location (t));
// Parse the next chunk (the condition) similar to a value on the RHS of
// an assignment. We allow attributes (which will only apply to the
// condition) for the same reason as in if-else (see parse_if_else()).
//
mode (lexer_mode::value);
next_with_attributes (t, tt);
const location el (get_location (t));
try
{
// Should evaluate to 'true' or 'false'.
//
bool e (
convert<bool> (
parse_value_with_attributes (t, tt,
pattern_mode::expand,
"expression",
nullptr,
true /* chunk */)));
e = (neg ? !e : e);
if (e)
{
skip_line (t, tt);
if (tt != type::eos)
next (t, tt); // Swallow newline.
return;
}
}
catch (const invalid_argument& e) { fail (el) << e; }
// Being here means things didn't end up well. Parse the description, if
// any, with expansion. Then fail.
//
names ns (tt != type::newline && tt != type::eos
? parse_names (t, tt,
pattern_mode::ignore,
"description",
nullptr)
: names ());
diag_record dr (fail (al));
if (ns.empty ())
dr << "assertion failed";
else
dr << ns;
}
void parser::
parse_print (token& t, type& tt)
{
// Parse the rest similar to a value on the RHS of an assignment
// (expansion, attributes).
//
mode (lexer_mode::value, '@');
next_with_attributes (t, tt);
if (value v = parse_value_with_attributes (t, tt, pattern_mode::expand))
{
names storage;
cout << reverse (v, storage) << endl;
}
else
cout << "[null]" << endl;
if (tt != type::eos)
next (t, tt); // Swallow newline.
}
void parser::
parse_diag (token& t, type& tt)
{
diag_record dr;
const location l (get_location (t));
switch (t.value[0])
{
case 'f': dr << fail (l); break;
case 'w': dr << warn (l); break;
case 'i': dr << info (l); break;
case 't': dr << text (l); break;
default: assert (false);
}
// Parse the rest similar to a value on the RHS of an assignment
// (expansion, attributes).
//
mode (lexer_mode::value, '@');
next_with_attributes (t, tt);
if (value v = parse_value_with_attributes (t, tt, pattern_mode::expand))
{
names storage;
dr << reverse (v, storage);
}
if (tt != type::eos)
next (t, tt); // Swallow newline.
}
void parser::
parse_dump (token& t, type& tt)
{
// dump [<target>...]
//
// If there are no targets, then we dump the current scope.
//
tracer trace ("parser::parse_dump", &path_);
const location l (get_location (t));
next (t, tt);
names ns (tt != type::newline && tt != type::eos
? parse_names (t, tt, pattern_mode::preserve)
: names ());
text (l) << "dump:";
// Dump directly into diag_stream.
//
ostream& os (*diag_stream);
if (ns.empty ())
{
if (scope_ != nullptr)
dump (*scope_, " "); // Indent two spaces.
else
os << " <no current scope>" << endl;
}
else
{
for (auto i (ns.begin ()), e (ns.end ()); i != e; )
{
name& n (*i++);
name o (n.pair ? move (*i++) : name ());
// @@ TODO
//
if (n.pattern)
fail (l) << "dumping target patterns no yet supported";
const target* t (enter_target::find_target (*this, n, o, l, trace));
if (t != nullptr)
dump (*t, " "); // Indent two spaces.
else
{
os << " <no target " << n;
if (n.pair && !o.dir.empty ()) os << '@' << o.dir;
os << '>' << endl;
}
if (i != e)
os << endl;
}
}
if (tt != type::eos)
next (t, tt); // Swallow newline.
}
const variable& parser::
parse_variable_name (string&& on, const location& l)
{
// Enter a variable name for assignment (as opposed to lookup).
// If the variable is qualified (and thus public), make it overridable.
//
// Note that the overridability can still be restricted (e.g., by a module
// that enters this variable or by a pattern).
//
bool ovr (on.find ('.') != string::npos);
auto r (scope_->var_pool ().insert (move (on), nullptr, nullptr, &ovr));
if (!r.second)
return r.first;
// If it's newly entered, verify it's not reserved for the build2 core.
// We reserve:
//
// - Variable components that start with underscore (_x, x._y).
//
// - Variables in the `build`, `import`, and `export` namespaces.
//
const string& n (r.first.name);
const char* w (
n[0] == '_' ? "name starts with underscore" :
n.find ("._") != string::npos ? "component starts with underscore" :
n.compare (0, 6, "build.") == 0 ? "is in 'build' namespace" :
n.compare (0, 7, "import.") == 0 ? "is in 'import' namespace" :
n.compare (0, 7, "export.") == 0 ? "is in 'export' namespace" : nullptr);
if (w != nullptr)
fail (l) << "variable name '" << n << "' is reserved" <<
info << "variable " << w;
return r.first;
}
const variable& parser::
parse_variable_name (names&& ns, const location& l)
{
// Parse and enter a variable name for assignment (as opposed to lookup).
// The list should contain a single, simple name.
//
if (ns.size () != 1 || ns[0].pattern || !ns[0].simple () || ns[0].empty ())
fail (l) << "expected variable name instead of " << ns;
return parse_variable_name (move (ns[0].value), l);
}
void parser::
parse_variable (token& t, type& tt, const variable& var, type kind)
{
// @@ TODO: yet unclear what should the logic be here: we could expect
// the called to handle skipping or skip it here. Need to see how
// everything fits.
//
// Note that here we treat default assignment (?=) the same as normal
// assignment expecting the caller to check whether the assignment is
// necessary (and skipping evaluating the value altogether otherwise).
//
assert (kind != type::default_assign);
value rhs (parse_variable_value (t, tt));
value& lhs (
kind == type::assign
? (prerequisite_ != nullptr ? prerequisite_->assign (var) :
target_ != nullptr ? target_->assign (var) :
/* */ scope_->assign (var))
: (prerequisite_ != nullptr ? prerequisite_->append (var, *target_) :
target_ != nullptr ? target_->append (var) :
/* */ scope_->append (var)));
apply_value_attributes (&var, lhs, move (rhs), kind);
}
void parser::
parse_type_pattern_variable (
token& t, token_type& tt,
pattern_type pt, const target_type& ptt, string pat, const location& ploc,
const variable& var, token_type kind, const location& loc)
{
// Parse target type/pattern-specific variable assignment.
//
// Note: expanding the value in the current scope context.
//
value rhs (parse_variable_value (t, tt));
pair<reference_wrapper<value>, bool> p (rhs /* dummy */, false);
try
{
// Leave the value untyped unless we are assigning.
//
// Note that the pattern is preserved if insert fails with regex_error.
//
p = scope_->target_vars[ptt].insert (pt, move (pat)).insert (
var, kind == type::assign, false /* reset_extra */);
}
catch (const regex_error& e)
{
// Print regex_error description if meaningful (no space).
//
fail (ploc) << "invalid regex pattern '" << pat << "'" << e;
}
value& lhs (p.first);
// We store prepend/append values untyped (similar to overrides).
//
if (rhs.type != nullptr && kind != type::assign)
untypify (rhs);
if (p.second)
{
// Note: we are always using assign and we don't pass the variable in
// case of prepend/append in order to keep the value untyped.
//
apply_value_attributes (kind == type::assign ? &var : nullptr,
lhs,
move (rhs),
type::assign);
// Map assignment type to the value::extra constant.
//
lhs.extra = (kind == type::prepend ? 1 :
kind == type::append ? 2 :
0);
}
else
{
// Existing value. What happens next depends on what we are trying to do
// and what's already there.
//
// Assignment is the easy one: we simply overwrite what's already
// there. Also, if we are appending/prepending to a previously assigned
// value, then we simply append or prepend normally.
//
if (kind == type::assign || lhs.extra == 0)
{
// Above we've instructed insert() not to type the value so we have to
// compensate for that now.
//
if (kind != type::assign)
{
if (var.type != nullptr && lhs.type != var.type)
typify (lhs, *var.type, &var);
}
else
lhs.extra = 0; // Change to assignment.
apply_value_attributes (&var, lhs, move (rhs), kind);
}
else
{
// This is an append/prepent to a previously appended or prepended
// value. We can handle it as long as things are consistent.
//
if (kind == type::prepend && lhs.extra == 2)
fail (loc) << "prepend to a previously appended target type/pattern-"
<< "specific variable " << var;
if (kind == type::append && lhs.extra == 1)
fail (loc) << "append to a previously prepended target type/pattern-"
<< "specific variable " << var;
// Do untyped prepend/append.
//
apply_value_attributes (nullptr, lhs, move (rhs), kind);
}
}
if (lhs.extra != 0 && lhs.type != nullptr)
fail (loc) << "typed prepend/append to target type/pattern-specific "
<< "variable " << var;
}
value parser::
parse_variable_value (token& t, type& tt, bool m)
{
if (m)
{
mode (lexer_mode::value, '@');
next_with_attributes (t, tt);
}
else
next (t, tt);
// Parse value attributes if any. Note that it's ok not to have anything
// after the attributes (e.g., foo=[null]).
//
attributes_push (t, tt, true);
return tt != type::newline && tt != type::eos
? parse_value (t, tt, pattern_mode::expand)
: value (names ());
}
const value_type* parser::
find_value_type (const scope*, const string& n)
{
auto ptr = [] (const value_type& vt) {return &vt;};
return
n == "bool" ? ptr (value_traits<bool>::value_type) :
n == "int64" ? ptr (value_traits<int64_t>::value_type) :
n == "uint64" ? ptr (value_traits<uint64_t>::value_type) :
n == "string" ? ptr (value_traits<string>::value_type) :
n == "path" ? ptr (value_traits<path>::value_type) :
n == "dir_path" ? ptr (value_traits<dir_path>::value_type) :
n == "abs_dir_path" ? ptr (value_traits<abs_dir_path>::value_type) :
n == "name" ? ptr (value_traits<name>::value_type) :
n == "name_pair" ? ptr (value_traits<name_pair>::value_type) :
n == "target_triplet" ? ptr (value_traits<target_triplet>::value_type) :
n == "project_name" ? ptr (value_traits<project_name>::value_type) :
n == "int64s" ? ptr (value_traits<int64s>::value_type) :
n == "uint64s" ? ptr (value_traits<uint64s>::value_type) :
n == "strings" ? ptr (value_traits<strings>::value_type) :
n == "paths" ? ptr (value_traits<paths>::value_type) :
n == "dir_paths" ? ptr (value_traits<dir_paths>::value_type) :
n == "names" ? ptr (value_traits<vector<name>>::value_type) :
n == "cmdline" ? ptr (value_traits<cmdline>::value_type) :
nullptr;
}
void parser::
apply_variable_attributes (const variable& var)
{
attributes as (attributes_pop ());
if (as.empty ())
return;
const location& l (as.loc);
const value_type* type (nullptr);
optional<variable_visibility> vis;
optional<bool> ovr;
for (auto& a: as)
{
string& n (a.name);
value& v (a.value);
if (n == "visibility")
{
try
{
string s (convert<string> (move (v)));
variable_visibility r;
if (s == "global") r = variable_visibility::global;
else if (s == "project") r = variable_visibility::project;
else if (s == "scope") r = variable_visibility::scope;
else if (s == "target") r = variable_visibility::target;
else if (s == "prerequisite") r = variable_visibility::prereq;
else throw invalid_argument ("unknown visibility name");
if (vis && r != *vis)
fail (l) << "conflicting variable visibilities: " << s << ", "
<< *vis;
vis = r;
}
catch (const invalid_argument& e)
{
fail (l) << "invalid " << n << " attribute value: " << e;
}
}
else if (n == "overridable")
{
try
{
// Treat absent value (represented as NULL) as true.
//
bool r (v.null || convert<bool> (move (v)));
if (ovr && r != *ovr)
fail (l) << "conflicting variable overridabilities";
ovr = r;
}
catch (const invalid_argument& e)
{
fail (l) << "invalid " << n << " attribute value: " << e;
}
}
else if (const value_type* t = find_value_type (root_, n))
{
if (!v.null)
fail (l) << "unexpected value in attribute " << a;
if (type != nullptr && t != type)
fail (l) << "conflicting variable types: " << n << ", "
<< type->name;
type = t;
}
else
fail (l) << "unknown variable attribute " << a;
}
if (type != nullptr && var.type != nullptr)
{
if (var.type == type)
type = nullptr;
else
fail (l) << "changing variable " << var << " type from "
<< var.type->name << " to " << type->name;
}
if (vis)
{
// Note that this logic naturally makes sure that a project-private
// variable doesn't have global visibility (since it would have been
// entered with the project visibility).
//
if (var.visibility == *vis)
vis = nullopt;
else if (var.visibility > *vis) // See variable_pool::update().
fail (l) << "changing variable " << var << " visibility from "
<< var.visibility << " to " << *vis;
}
if (ovr)
{
// Note that the overridability incompatibilities are diagnosed by
// update(). So we just need to diagnose the project-private case.
//
if (*ovr && var.owner != &ctx->var_pool)
fail (l) << "private variable " << var << " cannot be overridable";
}
if (type || vis || ovr)
var.owner->update (const_cast<variable&> (var),
type,
vis ? &*vis : nullptr,
ovr ? &*ovr : nullptr);
}
void parser::
apply_value_attributes (const variable* var,
value& v,
value&& rhs,
type kind)
{
attributes as (attributes_pop ());
const location& l (as.loc);
// Essentially this is an attribute-augmented assign/append/prepend.
//
bool null (false);
const value_type* type (nullptr);
for (auto& a: as)
{
string& n (a.name);
value& v (a.value);
if (n == "null")
{
if (rhs && !rhs.empty ()) // Note: null means we had an expansion.
fail (l) << "value with null attribute";
null = true;
// Fall through.
}
else if (const value_type* t = find_value_type (root_, n))
{
if (type != nullptr && t != type)
fail (l) << "conflicting value types: " << n << ", " << type->name;
type = t;
// Fall through.
}
else
fail (l) << "unknown value attribute " << a;
if (!v.null)
fail (l) << "unexpected value in attribute " << a;
}
// When do we set the type and when do we keep the original? This gets
// tricky for append/prepend where both values contribute. The guiding
// rule here is that if the user specified the type, then they reasonable
// expect the resulting value to be of that type. So for assign we always
// override the type since it's a new value. For append/prepend we
// override if the LHS value is NULL (which also covers undefined). We
// also override if LHS is untyped. Otherwise, we require that the types
// be the same. Also check that the requested value type doesn't conflict
// with the variable type.
//
if (var != nullptr && var->type != nullptr)
{
if (type == nullptr)
{
type = var->type;
}
else if (var->type != type)
{
fail (l) << "conflicting variable " << var->name << " type "
<< var->type->name << " and value type " << type->name;
}
}
// What if both LHS and RHS are typed? For now we do lexical conversion:
// if this specific value can be converted, then all is good. The
// alternative would be to do type conversion: if any value of RHS type
// can be converted to LHS type, then we are good. This may be a better
// option in the future but currently our parse_names() implementation
// untypifies everything if there are multiple names. And having stricter
// rules just for single-element values would be strange.
//
// We also have "weaker" type propagation for the RHS type.
//
bool rhs_type (false);
if (rhs.type != nullptr)
{
// Only consider RHS type if there is no explicit or variable type.
//
if (type == nullptr)
{
type = rhs.type;
rhs_type = true;
}
// Reduce this to the untyped value case for simplicity.
//
untypify (rhs);
}
if (kind == type::assign)
{
if (type != v.type)
{
v = nullptr; // Clear old value.
v.type = type;
}
}
else if (type != nullptr)
{
if (!v)
v.type = type;
else if (v.type == nullptr)
typify (v, *type, var);
else if (v.type != type && !rhs_type)
fail (l) << "conflicting original value type " << v.type->name
<< " and append/prepend value type " << type->name;
}
if (null)
{
if (kind == type::assign) // Ignore for prepend/append.
v = nullptr;
}
else
{
if (kind == type::assign)
{
if (rhs)
v.assign (move (rhs).as<names> (), var);
else
v = nullptr;
}
else if (rhs) // Don't append/prepent NULL.
{
if (kind == type::prepend)
v.prepend (move (rhs).as<names> (), var);
else
v.append (move (rhs).as<names> (), var);
}
}
}
value parser::
parse_value_with_attributes (token& t, token_type& tt,
pattern_mode pmode,
const char* what,
const string* separators,
bool chunk)
{
// Parse value attributes if any. Note that it's ok not to have anything
// after the attributes (think [null]).
//
attributes_push (t, tt, true);
value rhs (tt != type::newline && tt != type::eos
? parse_value (t, tt, pmode, what, separators, chunk)
: value (names ()));
if (pre_parse_)
return rhs; // Empty.
value lhs;
apply_value_attributes (nullptr, lhs, move (rhs), type::assign);
return lhs;
}
values parser::
parse_eval (token& t, type& tt, pattern_mode pmode)
{
// enter: token after lparen (lexed in the eval mode with attributes).
// leave: rparen (eval mode auto-expires at rparen).
if (tt == type::rparen)
return values ();
values r (parse_eval_comma (t, tt, pmode, true));
if (tt == type::backtick) // @@ TMP
fail (t) << "arithmetic evaluation context not yet supported";
if (tt == type::bit_or) // @@ TMP
fail (t) << "evaluation pipeline not yet supported";
if (tt != type::rparen)
fail (t) << "unexpected " << t; // E.g., stray ':'.
return r;
}
values parser::
parse_eval_comma (token& t, type& tt, pattern_mode pmode, bool first)
{
// enter: first token of LHS (lexed with enabled attributes)
// leave: next token after last RHS
// Left-associative: parse in a loop for as long as we can.
//
values r;
value lhs (parse_eval_ternary (t, tt, pmode, first));
if (!pre_parse_)
r.push_back (move (lhs));
while (tt == type::comma)
{
next_with_attributes (t, tt); // Recognize attributes before value.
value rhs (parse_eval_ternary (t, tt, pmode));
if (!pre_parse_)
r.push_back (move (rhs));
}
return r;
}
value parser::
parse_eval_ternary (token& t, type& tt, pattern_mode pmode, bool first)
{
// enter: first token of LHS (lexed with enabled attributes)
// leave: next token after last RHS
// Right-associative (kind of): we parse what's between ?: without
// regard for priority and we recurse on what's after :. Here is an
// example:
//
// a ? x ? y : z : b ? c : d
//
// This should be parsed/evaluated as:
//
// a ? (x ? y : z) : (b ? c : d)
//
location l (get_location (t));
value lhs (parse_eval_or (t, tt, pmode, first));
if (tt != type::question)
return lhs;
location ql (get_location (t));
// Use the pre-parse mechanism to implement short-circuit.
//
bool pp (pre_parse_);
bool q;
try
{
q = pp ? true : convert<bool> (move (lhs));
}
catch (const invalid_argument& e)
{
fail (l) << e <<
info (ql) << "use the '\\?' escape sequence if this is a wildcard "
<< "pattern" << endf;
}
if (!pp)
pre_parse_ = !q; // Short-circuit middle?
next_with_attributes (t, tt); // Recognize attributes before value.
value mhs (parse_eval_ternary (t, tt, pmode));
if (tt != type::colon)
{
fail (t) << "expected ':' instead of " << t <<
info (ql) << "use the '\\?' escape sequence if this is a wildcard "
<< "pattern" << endf;
}
if (!pp)
pre_parse_ = q; // Short-circuit right?
next_with_attributes (t, tt); // Recognize attributes before value.
value rhs (parse_eval_ternary (t, tt, pmode));
pre_parse_ = pp;
return q ? move (mhs) : move (rhs);
}
value parser::
parse_eval_or (token& t, type& tt, pattern_mode pmode, bool first)
{
// enter: first token of LHS (lexed with enabled attributes)
// leave: next token after last RHS
// Left-associative: parse in a loop for as long as we can.
//
location l (get_location (t));
value lhs (parse_eval_and (t, tt, pmode, first));
// Use the pre-parse mechanism to implement short-circuit.
//
bool pp (pre_parse_);
while (tt == type::log_or)
{
try
{
if (!pre_parse_ && convert<bool> (move (lhs)))
pre_parse_ = true;
next_with_attributes (t, tt); // Recognize attributes before value.
l = get_location (t);
value rhs (parse_eval_and (t, tt, pmode));
if (pre_parse_)
continue;
// Store the result as bool value.
//
lhs = convert<bool> (move (rhs));
}
catch (const invalid_argument& e) { fail (l) << e; }
}
pre_parse_ = pp;
return lhs;
}
value parser::
parse_eval_and (token& t, type& tt, pattern_mode pmode, bool first)
{
// enter: first token of LHS (lexed with enabled attributes)
// leave: next token after last RHS
// Left-associative: parse in a loop for as long as we can.
//
location l (get_location (t));
value lhs (parse_eval_comp (t, tt, pmode, first));
// Use the pre-parse mechanism to implement short-circuit.
//
bool pp (pre_parse_);
while (tt == type::log_and)
{
try
{
if (!pre_parse_ && !convert<bool> (move (lhs)))
pre_parse_ = true;
next_with_attributes (t, tt); // Recognize attributes before value.
l = get_location (t);
value rhs (parse_eval_comp (t, tt, pmode));
if (pre_parse_)
continue;
// Store the result as bool value.
//
lhs = convert<bool> (move (rhs));
}
catch (const invalid_argument& e) { fail (l) << e; }
}
pre_parse_ = pp;
return lhs;
}
value parser::
parse_eval_comp (token& t, type& tt, pattern_mode pmode, bool first)
{
// enter: first token of LHS (lexed with enabled attributes)
// leave: next token after last RHS
// Left-associative: parse in a loop for as long as we can.
//
value lhs (parse_eval_value (t, tt, pmode, first));
while (tt == type::equal ||
tt == type::not_equal ||
tt == type::less ||
tt == type::less_equal ||
tt == type::greater ||
tt == type::greater_equal)
{
type op (tt);
location l (get_location (t));
next_with_attributes (t, tt); // Recognize attributes before value.
value rhs (parse_eval_value (t, tt, pmode));
if (pre_parse_)
continue;
// Store the result as a bool value.
//
lhs = value (compare_values (op, lhs, rhs, l));
}
return lhs;
}
value parser::
parse_eval_value (token& t, type& tt, pattern_mode pmode, bool first)
{
// enter: first token of value (lexed with enabled attributes)
// leave: next token after value
// Parse value attributes if any. Note that it's ok not to have anything
// after the attributes, as in, ($foo == [null]), or even ([null])
//
auto at (attributes_push (t, tt, true));
const location l (get_location (t));
value v;
switch (tt)
{
case type::log_not:
{
next_with_attributes (t, tt); // Recognize attributes before value.
v = parse_eval_value (t, tt, pmode);
if (pre_parse_)
break;
try
{
// Store the result as bool value.
//
v = !convert<bool> (move (v));
}
catch (const invalid_argument& e) { fail (l) << e; }
break;
}
default:
{
// If parse_value() gets called, it expects to see a value. Note that
// it will also handle nested eval contexts.
//
v = (tt != type::colon &&
tt != type::question &&
tt != type::comma &&
tt != type::rparen &&
tt != type::equal &&
tt != type::not_equal &&
tt != type::less &&
tt != type::less_equal &&
tt != type::greater &&
tt != type::greater_equal &&
tt != type::log_or &&
tt != type::log_and
? parse_value (t, tt, pmode)
: value (names ()));
}
}
// If this is the first expression then handle the eval-qual special case
// (target-qualified name represented as a special ':'-style pair).
//
if (first && tt == type::colon)
{
if (at.first)
fail (at.second) << "attributes before target-qualified variable name";
if (!pre_parse_)
attributes_pop ();
const location nl (get_location (t));
next (t, tt);
value n (parse_value (t, tt, pattern_mode::preserve));
if (tt != type::rparen)
fail (t) << "expected ')' after variable name";
if (pre_parse_)
return v; // Empty.
// We used to return this as a <target>:<name> pair but that meant we
// could not handle an out-qualified target (which is represented as
// <target>@<out> pair). As a somewhat of a hack, we deal with this by
// changing the order of the name and target to be <name>:<target> with
// the qualified case becoming a "tripple pair" <name>:<target>@<out>.
//
// @@ This is actually not great since it's possible to observe such a
// tripple pair, for example with `print (file{x}@./:y)`.
//
if (n.type != nullptr || !n || n.as<names> ().size () != 1 ||
n.as<names> ()[0].pattern)
fail (nl) << "expected variable name after ':'";
names& ns (n.as<names> ());
ns.back ().pair = ':';
if (v.type == nullptr && v)
{
names& ts (v.as<names> ());
size_t s (ts.size ());
if (s == 1 || (s == 2 && ts.front ().pair == '@'))
{
ns.push_back (move (ts.front ()));
if (s == 2)
ns.push_back (move (ts.back ()));
return n;
}
}
fail (l) << "expected target before ':'" << endf;
}
else
{
if (pre_parse_)
return v; // Empty.
// Process attributes if any.
//
if (attributes_top ().empty ())
{
attributes_pop ();
return v;
}
value r;
apply_value_attributes (nullptr, r, move (v), type::assign);
return r;
}
}
bool parser::
compare_values (type op, value& lhs, value& rhs, const location& loc) const
{
// Use (potentially typed) comparison via value. If one of the values is
// typed while the other is not, then try to convert the untyped one to
// the other's type instead of complaining. This seems like a reasonable
// thing to do and will allow us to write:
//
// if ($build.version > 30000)
//
// Rather than having to write:
//
// if ($build.version > [uint64] 30000)
//
if (lhs.type != rhs.type)
{
// @@ Would be nice to pass location for diagnostics.
//
if (lhs.type == nullptr)
{
if (lhs)
typify (lhs, *rhs.type, nullptr);
}
else if (rhs.type == nullptr)
{
if (rhs)
typify (rhs, *lhs.type, nullptr);
}
else
fail (loc) << "comparison between " << lhs.type->name << " and "
<< rhs.type->name;
}
bool r;
switch (op)
{
case type::equal: r = lhs == rhs; break;
case type::not_equal: r = lhs != rhs; break;
case type::less: r = lhs < rhs; break;
case type::less_equal: r = lhs <= rhs; break;
case type::greater: r = lhs > rhs; break;
case type::greater_equal: r = lhs >= rhs; break;
default: r = false; assert (false);
}
return r;
}
pair<bool, location> parser::
attributes_push (token& t, type& tt, bool standalone, bool next_token)
{
// To make sure that the attributes are not standalone we need to read the
// token which follows ']'.
//
assert (standalone || next_token);
location l (get_location (t));
bool has (tt == type::lsbrace);
if (!pre_parse_)
attributes_.push_back (attributes (l));
if (!has)
return make_pair (false, l);
mode (lexer_mode::attributes);
next (t, tt);
if (tt != type::rsbrace)
{
do
{
if (tt == type::newline || tt == type::eos)
break;
// Parse the attribute name with expansion (we rely on this in some
// old and hairy tests).
//
// Note that the attributes lexer mode does not recognize `{}@` as
// special and we rely on that in the rule hint attributes
// (libs@rule_hint=cxx).
//
const location l (get_location (t));
names ns (
parse_names (t, tt, pattern_mode::ignore, "attribute", nullptr));
string n;
value v;
if (!pre_parse_)
{
// The list should contain a single, simple name.
//
if (ns.size () != 1 || !ns[0].simple () || ns[0].empty ())
fail (l) << "expected attribute name instead of " << ns;
n = move (ns[0].value);
}
if (tt == type::assign)
{
// To handle the value we switch into the attribute_value mode
// (which doesn't treat `=` as special).
//
mode (lexer_mode::attribute_value, '@');
next (t, tt);
v = (tt != type::comma && tt != type::rsbrace
? parse_value (t, tt, pattern_mode::ignore, "attribute value")
: value (names ()));
expire_mode ();
}
if (!pre_parse_)
attributes_.back ().push_back (attribute {move (n), move (v)});
if (tt == type::comma)
next (t, tt);
}
while (tt != type::rsbrace);
}
else
has = false; // `[]` doesn't count.
if (tt != type::rsbrace)
fail (t) << "expected ']' instead of " << t;
if (next_token)
{
next (t, tt);
if (tt == type::newline || tt == type::eos)
{
if (!standalone)
fail (t) << "standalone attributes";
}
//
// Verify that the attributes are separated from the following word or
// "word-producing" token.
//
else if (!t.separated && (tt == type::word ||
tt == type::dollar ||
tt == type::lparen ||
tt == type::lcbrace))
fail (t) << "whitespace required after attributes" <<
info (l) << "use the '\\[' escape sequence if this is a wildcard "
<< "pattern";
}
return make_pair (has, l);
}
// Add a name verifying it is valid.
//
static inline name&
append_name (names& ns,
optional<project_name> p,
dir_path d,
string t,
string v,
optional<name::pattern_type> pat,
const location& loc)
{
// The directory/value must not be empty if we have a type.
//
if (d.empty () && v.empty () && !t.empty ())
fail (loc) << "typed empty name";
ns.emplace_back (move (p), move (d), move (t), move (v), pat);
return ns.back ();
}
// Splice names from the name view into the destination name list while
// doing sensible things with pairs, types, etc. Return the number of
// the names added.
//
// If nv points to nv_storage then the names can be moved.
//
size_t parser::
splice_names (const location& loc,
const names_view& nv,
names&& nv_storage,
names& ns,
const char* what,
size_t pairn,
const optional<project_name>& pp,
const dir_path* dp,
const string* tp)
{
// We could be asked to splice 0 elements (see the name pattern
// expansion). In this case may need to pop the first half of the
// pair.
//
if (nv.size () == 0)
{
if (pairn != 0)
ns.pop_back ();
return 0;
}
size_t start (ns.size ());
// Move if nv points to nv_storage,
//
bool m (nv.data () == nv_storage.data ());
for (const name& cn: nv)
{
name* n (m ? const_cast<name*> (&cn) : nullptr);
// Project.
//
optional<project_name> p;
if (cn.proj)
{
if (pp)
fail (loc) << "nested project name " << *cn.proj << " in " << what;
p = m ? move (n->proj) : cn.proj;
}
else if (pp)
p = pp;
// Directory.
//
dir_path d;
if (!cn.dir.empty ())
{
if (dp != nullptr)
{
if (cn.dir.absolute ())
fail (loc) << "nested absolute directory " << cn.dir << " in "
<< what;
d = *dp / cn.dir;
}
else
d = m ? move (n->dir) : cn.dir;
}
else if (dp != nullptr)
d = *dp;
// Type.
//
string t;
if (!cn.type.empty ())
{
if (tp != nullptr)
fail (loc) << "nested type name " << cn.type << " in " << what;
t = m ? move (n->type) : cn.type;
}
else if (tp != nullptr)
t = *tp;
// Value.
//
string v (m ? move (n->value) : cn.value);
// If we are a second half of a pair.
//
if (pairn != 0)
{
// Check that there are no nested pairs.
//
if (cn.pair)
fail (loc) << "nested pair in " << what;
// And add another first half unless this is the first instance.
//
if (pairn != ns.size ())
ns.push_back (ns[pairn - 1]);
}
name& r (
append_name (ns,
move (p), move (d), move (t), move (v), cn.pattern,
loc));
r.pair = cn.pair;
}
return ns.size () - start;
}
// Expand a name pattern. Note that the result can be empty (as in "no
// elements").
//
size_t parser::
expand_name_pattern (const location& l,
names&& pat,
names& ns,
const char* what,
size_t pairn,
const dir_path* dp,
const string* tp,
const target_type* tt)
{
assert (!pat.empty () && (tp == nullptr || tt != nullptr));
// We are going to accumulate the result in a vector which can result in
// quite a few linear searches. However, thanks to a few optimizations,
// this shouldn't be an issue for the common cases (e.g., a pattern plus
// a few exclusions).
//
names r;
bool dir (false);
// Figure out the start directory.
//
const dir_path* sp;
dir_path s;
if (dp != nullptr)
{
if (dp->absolute ())
sp = dp;
else
{
s = *pbase_ / *dp;
sp = &s;
}
}
else
sp = pbase_;
// Compare string to name as paths and according to dir.
//
auto equal = [&dir] (const string& v, const name& n) -> bool
{
// Use path comparison (which may be slash/case-insensitive).
//
return path::traits_type::compare (
v, dir ? n.dir.representation () : n.value) == 0;
};
// Compare name to pattern as paths and according to dir.
//
auto match = [&dir, sp] (const name& n, const path& pattern) -> bool
{
const path& p (dir ? path_cast<path> (n.dir) : path (n.value));
return path_match (p, pattern, *sp);
};
// Append name/extension to result according to dir. Store an indication
// of whether it was amended as well as whether the extension is present
// in the pair flag. The extension itself is stored in name::type.
//
auto append = [&r, &dir] (string&& v, optional<string>&& e, bool a)
{
// Here we can assume either dir or value are not empty (comes from
// pattern expansion).
//
name n (dir ? name (dir_path (move (v))) : name (move (v)));
if (a)
n.pair |= 0x01;
if (e)
{
n.type = move (*e);
n.pair |= 0x02;
}
r.push_back (move (n));
};
auto include_match = [&r, &equal, &append] (string&& m,
optional<string>&& e,
bool a)
{
auto i (find_if (
r.begin (),
r.end (),
[&m, &equal] (const name& n) {return equal (m, n);}));
if (i == r.end ())
append (move (m), move (e), a);
};
// May throw invalid_path.
//
auto include_pattern =
[&r, &append, &include_match, sp, &l, this] (string&& p,
optional<string>&& e,
bool a)
{
// If we don't already have any matches and our pattern doesn't contain
// multiple recursive wildcards, then the result will be unique and we
// can skip checking for duplicated. This should help quite a bit in the
// common cases where we have a pattern plus maybe a few exclusions.
//
bool unique (r.empty () && path_pattern_recursive (path (p)) <= 1);
struct data
{
const optional<string>& e;
const dir_path& sp;
function<void (string&&, optional<string>&&)> appf;
} d {e, *sp, nullptr};
if (unique)
d.appf = [a, &append] (string&& v, optional<string>&& e)
{
append (move (v), move (e), a);
};
else
d.appf = [a, &include_match] (string&& v, optional<string>&& e)
{
include_match (move (v), move (e), a);
};
auto process = [&d, this] (path&& m, const string& p, bool interm)
{
// Ignore entries that start with a dot unless the pattern that
// matched them also starts with a dot. Also ignore directories
// containing the .buildignore file (ignoring the test if we don't
// have a sufficiently setup project root).
//
const string& s (m.string ());
if ((p[0] != '.' && s[path::traits_type::find_leaf (s)] == '.') ||
(root_ != nullptr &&
root_->root_extra != nullptr &&
m.to_directory () &&
exists (d.sp / m / root_->root_extra->buildignore_file)))
return !interm;
// Note that we have to make copies of the extension since there will
// multiple entries for each pattern.
//
if (!interm)
{
// If the extension is empty (meaning there should be no extension,
// for example hxx{Q*.}), skip entries with extensions.
//
if (!d.e || !d.e->empty () || m.extension_cstring () == nullptr)
d.appf (move (m).representation (), optional<string> (d.e));
}
return true;
};
try
{
path_search (path (move (p)), process, *sp);
}
catch (const system_error& e)
{
fail (l) << "unable to scan " << *sp << ": " << e;
}
};
auto exclude_match = [&r, &equal] (const string& m)
{
// We know there can only be one element so we use find_if() instead of
// remove_if() for efficiency.
//
auto i (find_if (
r.begin (),
r.end (),
[&m, &equal] (const name& n) {return equal (m, n);}));
if (i != r.end ())
r.erase (i);
};
auto exclude_pattern = [&r, &match] (const path& p)
{
for (auto i (r.begin ()); i != r.end (); )
{
if (match (*i, p))
i = r.erase (i);
else
++i;
}
};
// Process the pattern and inclusions/exclusions.
//
for (auto b (pat.begin ()), i (b), end (pat.end ()); i != end; ++i)
{
name& n (*i);
bool first (i == b);
char s ('\0'); // Inclusion/exclusion sign (+/-).
// Reduce inclusions/exclusions group (-/+{foo bar}) to simple name/dir.
//
if (n.typed () && n.type.size () == 1)
{
if (!first)
{
s = n.type[0];
if (s == '-' || s == '+')
n.type.clear ();
}
else
{
assert (n.type[0] == '+'); // Can only belong to inclusion group.
n.type.clear ();
}
}
if (n.empty () || !(n.simple () || n.directory ()))
fail (l) << "invalid '" << n << "' in " << what << " pattern";
string v (n.simple () ? move (n.value) : move (n.dir).representation ());
// Figure out if this is inclusion or exclusion.
//
if (first)
s = '+'; // Treat as inclusion.
else if (s == '\0')
{
s = v[0];
assert (s == '-' || s == '+'); // Validated at the token level.
v.erase (0, 1);
if (v.empty ())
fail (l) << "empty " << what << " pattern";
}
// Amend the pattern or match in a target type-specific manner.
//
// Name splitting must be consistent with scope::find_target_type().
// Since we don't do it for directories, we have to delegate it to the
// target_type::pattern() call.
//
bool a (false); // Amended.
optional<string> e; // Extension.
{
bool d;
if (tt != nullptr && tt->pattern != nullptr)
{
a = tt->pattern (*tt, *scope_, v, e, l, false);
d = path::traits_type::is_separator (v.back ());
}
else
{
d = path::traits_type::is_separator (v.back ());
if (!d)
e = target::split_name (v, l);
}
// Based on the first pattern verify inclusions/exclusions are
// consistently file/directory.
//
if (first)
dir = d;
else if (d != dir)
fail (l) << "inconsistent file/directory result in " << what
<< " pattern";
}
// Factor non-empty extension back into the name for searching.
//
// Note that doing it at this stage means we don't support extension
// patterns.
//
if (e && !e->empty ())
{
v += '.';
v += *e;
if (path_pattern (*e))
fail (l) << "extension pattern in '" << v << "' (" << what
<< " extension patterns are not yet supported)";
}
try
{
if (s == '+')
include_pattern (move (v), move (e), a);
else
{
path p (move (v));
if (path_pattern (p))
exclude_pattern (p);
else
exclude_match (move (p).representation ()); // Reuse the buffer.
}
}
catch (const invalid_path& e)
{
fail (l) << "invalid path '" << e.path << "' in " << what
<< " pattern";
}
}
// Post-process the result: remove extension, reverse target type-specific
// pattern/match amendments (essentially: cxx{*} -> *.cxx -> foo.cxx ->
// cxx{foo}), and recombine the result.
//
for (name& n: r)
{
string v;
optional<string> e;
if (dir)
v = move (n.dir).representation ();
else
{
v = move (n.value);
if ((n.pair & 0x02) != 0)
{
e = move (n.type);
n.type.clear ();
// Remove non-empty extension from the name (it got to be there, see
// above).
//
if (!e->empty ())
v.resize (v.size () - e->size () - 1);
}
}
bool de (false); // Default extension.
if ((n.pair & 0x01) != 0)
{
de = static_cast<bool> (e);
tt->pattern (*tt, *scope_, v, e, l, true);
de = de && !e;
}
if (dir)
n.dir = dir_path (move (v));
else
{
target::combine_name (v, e, de);
n.value = move (v);
}
n.pair = '\0';
}
return splice_names (
l, names_view (r), move (r), ns, what, pairn, nullopt, dp, tp);
}
// Parse names inside {} and handle the following "crosses" (i.e.,
// {a b}{x y}) if any. Return the number of names added to the list.
//
size_t parser::
parse_names_trailer (token& t, type& tt,
names& ns,
pattern_mode pmode,
const char* what,
const string* separators,
size_t pairn,
const optional<project_name>& pp,
const dir_path* dp,
const string* tp,
bool cross)
{
if (pp)
pmode = pattern_mode::preserve;
next (t, tt); // Get what's after '{'.
const location loc (get_location (t)); // Start of names.
size_t start (ns.size ());
if (pairn == 0 && start != 0 && ns.back ().pair)
pairn = start;
names r;
// Parse names until closing '}' expanding patterns.
//
auto parse = [&r, &t, &tt, pmode, what, separators, this] (
const optional<project_name>& pp,
const dir_path* dp,
const string* tp)
{
const location loc (get_location (t));
size_t start (r.size ());
// This can be an ordinary name group or a pattern (with inclusions and
// exclusions). We want to detect which one it is since for patterns we
// want just the list of simple names without pair/dir/type added (those
// are added after the pattern expansion in expand_name_pattern()).
//
// Detecting which one it is is tricky. We cannot just peek at the token
// and look for some wildcards since the pattern can be the result of an
// expansion (or, worse, concatenation). Thus pattern_mode::detect: we
// are going to ask parse_names() to detect for us if the first name is
// a pattern. And if it is, to refrain from adding pair/dir/type.
//
optional<const target_type*> pat_tt (
parse_names (
t, tt,
r,
pmode == pattern_mode::expand ? pattern_mode::detect : pmode,
false /* chunk */,
what,
separators,
0, // Handled by the splice_names() call below.
pp, dp, tp,
false /* cross */,
true /* curly */).pattern);
if (tt != type::rcbrace)
fail (t) << "expected '}' instead of " << t;
// See if this is a pattern.
//
if (pat_tt)
{
// In the pre-parse mode the parse_names() result can never be a
// pattern.
//
assert (!pre_parse_);
// Move the pattern names our of the result.
//
names ps;
if (start == 0)
ps = move (r);
else
ps.insert (ps.end (),
make_move_iterator (r.begin () + start),
make_move_iterator (r.end ()));
r.resize (start);
expand_name_pattern (loc, move (ps), r, what, 0, dp, tp, *pat_tt);
}
};
// Parse and expand the first group.
//
parse (pp, dp, tp);
// Handle crosses. The overall plan is to take what's in r, cross each
// element with the next group using the re-parse machinery, and store the
// result back to r.
//
while (cross && peek () == type::lcbrace && !peeked ().separated)
{
next (t, tt); // Get '{'.
names ln (move (r));
r.clear ();
// Cross with empty LHS/RHS is empty. Handle the LHS case now by parsing
// and discaring RHS (empty RHS is handled "naturally" below).
//
if (ln.size () == 0)
{
next (t, tt); // Get what's after '{'.
parse (nullopt, nullptr, nullptr);
r.clear ();
continue;
}
// In the pre-parse mode we fall back to the above "cross with empty
// LHS" case.
//
assert (!pre_parse_);
//@@ This can be a nested replay (which we don't support), for example,
// via target-specific var assignment. Add support for nested (2-level
// replay)? Why not use replay_guard for storage? Alternatively, don't
// use it here (see parse_for() for an alternative approach).
//
replay_guard rg (*this, ln.size () > 1);
for (auto i (ln.begin ()), e (ln.end ()); i != e; )
{
next (t, tt); // Get what's after '{'.
const location loc (get_location (t));
name& l (*i);
// "Promote" the lhs value to type.
//
if (!l.value.empty ())
{
if (!l.type.empty ())
fail (loc) << "nested type name " << l.value;
l.type.swap (l.value);
}
parse (l.proj,
l.dir.empty () ? nullptr : &l.dir,
l.type.empty () ? nullptr : &l.type);
if (++i != e)
rg.play (); // Replay.
}
}
// We don't modify the resulting names during pre-parsing and so can bail
// out now.
//
if (pre_parse_)
return 0;
// Splice the names into the result. Note that we have already handled
// project/dir/type qualification but may still have a pair. Fast-path
// common cases.
//
if (pairn == 0)
{
if (start == 0)
ns = move (r);
else
ns.insert (ns.end (),
make_move_iterator (r.begin ()),
make_move_iterator (r.end ()));
}
else
splice_names (loc,
names_view (r), move (r),
ns, what,
pairn,
nullopt, nullptr, nullptr);
return ns.size () - start;
}
bool parser::
start_names (type& tt, bool lp)
{
return (tt == type::word ||
tt == type::lcbrace || // Untyped name group: '{foo ...'.
tt == type::dollar || // Variable expansion: '$foo ...'.
(tt == type::lparen && lp) || // Eval context: '(foo) ...'.
tt == type::pair_separator); // Empty pair LHS: '@foo ...'.
}
// Slashe(s) plus '%'. Note that here we assume '/' is there since that's
// in our buildfile "syntax".
//
const string parser::name_separators (
string (path::traits_type::directory_separators) + '%');
auto parser::
parse_names (token& t, type& tt,
names& ns,
pattern_mode pmode,
bool chunk,
const char* what,
const string* separators,
size_t pairn,
const optional<project_name>& pp,
const dir_path* dp,
const string* tp,
bool cross,
bool curly) -> parse_names_result
{
// Note that support for pre-parsing is partial, it does not handle
// groups ({}).
//
// If pairn is not 0, then it is an index + 1 of the first half of the
// pair for which we are parsing the second halves, for example:
//
// a@{b c d{e f} {}}
tracer trace ("parser::parse_names", &path_);
if (pp)
pmode = pattern_mode::preserve;
// Returned value NULL/type and pattern (see below).
//
bool rvalue (false);
bool vnull (false);
const value_type* vtype (nullptr);
optional<const target_type*> rpat;
// Buffer that is used to collect the complete name in case of an
// unseparated variable expansion or eval context, e.g., foo$bar($baz)fox.
// The idea is to concatenate all the individual parts in this buffer and
// then re-inject it into the loop as a single token.
//
// If the concatenation is untyped (see below), then the name should be
// simple (i.e., just a string).
//
bool concat (false);
bool concat_quoted (false);
bool concat_quoted_first (false);
name concat_data;
auto concat_typed = [this, what, &vnull, &vtype,
&concat, &concat_data] (value&& rhs,
const location& loc)
{
// If we have no LHS yet, then simply copy value/type.
//
if (concat)
{
small_vector<value, 2> a;
// Convert LHS to value.
//
a.push_back (value (vtype)); // Potentially typed NULL value.
if (!vnull)
a.back ().assign (move (concat_data), nullptr);
// RHS.
//
a.push_back (move (rhs));
const char* l ((a[0].type != nullptr ? a[0].type->name : "<untyped>"));
const char* r ((a[1].type != nullptr ? a[1].type->name : "<untyped>"));
pair<value, bool> p;
{
// Print the location information in case the function fails.
//
auto df = make_diag_frame (
[this, &loc, l, r] (const diag_record& dr)
{
dr << info (loc) << "while concatenating " << l << " to " << r;
dr << info << "use quoting to force untyped concatenation";
});
if (ctx == nullptr)
fail << "literal " << what << " expected";
p = ctx->functions.try_call (
scope_, "builtin.concat", vector_view<value> (a), loc);
}
if (!p.second)
fail (loc) << "no typed concatenation of " << l << " to " << r <<
info << "use quoting to force untyped concatenation";
rhs = move (p.first);
// It seems natural to expect that a typed concatenation result
// is also typed.
//
assert (rhs.type != nullptr);
}
vnull = rhs.null;
vtype = rhs.type;
if (!vnull)
{
if (vtype != nullptr)
untypify (rhs);
names& d (rhs.as<names> ());
// If the value is empty, then untypify() will (typically; no pun
// intended) represent it as an empty sequence of names rather than
// a sequence of one empty name. This is usually what we need (see
// simple_reverse() for details) but not in this case.
//
if (!d.empty ())
{
assert (d.size () == 1); // Must be a single value.
concat_data = move (d[0]);
}
}
};
// Set the result pattern target type and switch to the preserve mode.
//
// The goal of the detect mode is to assemble the "raw" list (the pattern
// itself plus inclusions/exclusions) that will then be passed to
// expand_name_pattern(). So clear pair, directory, and type (they will be
// added during pattern expansion) and change the mode to preserve (to
// prevent any expansions in inclusions/exclusions).
//
auto pattern_detected =
[&pairn, &dp, &tp, &rpat, &pmode] (const target_type* ttp)
{
assert (pmode == pattern_mode::detect);
pairn = 0;
dp = nullptr;
tp = nullptr;
pmode = pattern_mode::preserve;
rpat = ttp;
};
// Return '+' or '-' if a token can start an inclusion or exclusion
// (pattern or group), '\0' otherwise. The result can be used as bool.
// Note that token::qfirst covers both quoting and escaping.
//
auto pattern_prefix = [] (const token& t) -> char
{
char c;
return (t.type == type::word && !t.qfirst &&
((c = t.value[0]) == '+' || c == '-')
? c
: '\0');
};
// A name sequence potentially starts with a pattern if it starts with a
// literal unquoted plus character.
//
bool ppat (pmode == pattern_mode::detect && pattern_prefix (t) == '+');
// Potential pattern inclusion group. To be recognized as such it should
// start with the literal unquoted '+{' string and expand into a non-empty
// name sequence.
//
// The first name in such a group is a pattern, regardless of whether it
// contains wildcard characters or not. The trailing names are inclusions.
// For example the following pattern groups are equivalent:
//
// cxx{+{f* *oo}}
// cxx{f* +*oo}
//
bool pinc (ppat && t.value == "+" &&
peek () == type::lcbrace && !peeked ().separated);
// Number of names in the last group. This is used to detect when
// we need to add an empty first pair element (e.g., @y) or when
// we have a (for now unsupported) multi-name LHS (e.g., {x y}@z).
//
size_t count (0);
size_t start (ns.size ());
for (bool first (true);; first = false)
{
// Note that here we assume that, except for the first iterartion,
// tt contains the type of the peeked token.
// Automatically reset the detect pattern mode to expand after the
// first element.
//
if (pmode == pattern_mode::detect && start != ns.size ())
pmode = pattern_mode::expand;
// Return true if the next token (which should be peeked at) won't be
// part of the name.
//
auto last_token = [chunk, this] ()
{
const token& t (peeked ());
type tt (t.type);
return ((chunk && t.separated) || !start_names (tt));
};
// Return true if the next token (which should be peeked at) won't be
// part of this concatenation. The et argument can be used to recognize
// an extra (unseparated) token type as being concatenated.
//
auto last_concat = [this] (type et = type::eos)
{
const token& t (peeked ());
type tt (t.type);
return (t.separated ||
(tt != type::word &&
tt != type::dollar &&
tt != type::lparen &&
(et == type::eos ? true : tt != et)));
};
// If we have accumulated some concatenations, then we have two options:
// continue accumulating or inject. We inject if the next token is not a
// word, var expansion, or eval context or if it is separated.
//
optional<pair<const value_type*, name>> path_concat; // Backup.
if (concat && last_concat ())
{
// Concatenation does not affect the tokens we get, only what we do
// with them. As a result, we never set the concat flag during pre-
// parsing.
//
assert (!pre_parse_);
bool quoted (concat_quoted);
bool quoted_first (concat_quoted_first);
concat = false;
concat_quoted = false;
concat_quoted_first = false;
// If this is a result of typed concatenation, then don't inject. For
// one we don't want any of the "interpretations" performed in the
// word parsing code below.
//
// And if this is the only name, then we also want to preserve the
// type in the result.
//
// There is one exception, however: if the type is path, dir_path, or
// string and what follows is an unseparated '{', then we need to
// untypify it and inject in order to support our directory/target-
// type syntax (this means that a target type must be a valid path
// component). For example:
//
// $out_root/foo/lib{bar}
// $out_root/$libtype{bar}
//
// And here is another exception: if we have a project, directory, or
// type, then this is a name and we should also untypify it (let's for
// now do it for the same set of types as the first exception). For
// example:
//
// dir/{$str}
// file{$str}
//
// And yet another exception: if the type is path or dir_path and the
// pattern mode is not ignore, then we will inject to try our luck in
// interpreting the concatenation result as a path pattern. This makes
// sure patterns like `$src_base/*.txt` work, naturally. Failed that,
// we will handle this concatenation as we do for other types (via the
// path_concat backup).
//
// A concatenation cannot produce value/NULL.
//
vnull = false;
rvalue = false;
if (vtype != nullptr)
{
bool e1 (tt == type::lcbrace && !peeked ().separated);
bool e2 (pp || dp != nullptr || tp != nullptr);
const value_type* pt (&value_traits<path>::value_type);
const value_type* dt (&value_traits<dir_path>::value_type);
if (e1 || e2)
{
if (vtype == pt || vtype == &value_traits<string>::value_type)
; // Representation is already in concat_data.value.
else if (vtype == dt)
concat_data.value = move (concat_data.dir).representation ();
else
{
diag_record dr (fail (t));
if (e1) dr << "expected directory and/or target type";
else if (e2) dr << "expected name";
dr << " instead of " << vtype->name << endf;
}
vtype = nullptr;
// Fall through to injection.
}
else if (pmode != pattern_mode::ignore &&
(vtype == pt || vtype == dt))
{
path_concat = make_pair (vtype, concat_data);
// Note: for path the representation is already in
// concat_data.value.
//
if (vtype == dt)
concat_data.value = move (concat_data.dir).representation ();
vtype = nullptr;
// Fall through to injection.
}
else
{
// This is either a simple name (untyped concatenation; in which
// case it is always valid) or it came from type concatenation in
// which case we can assume the result is valid.
//
ns.push_back (move (concat_data));
// Clear the type information if that's not the only name.
//
if (start != ns.size () || !last_token ())
vtype = nullptr;
// Restart the loop (but now with concat mode off) to handle
// chunking, etc.
//
continue;
}
}
// Replace the current token with our injection (after handling it we
// will peek at the current token again).
//
// We don't know what exactly was quoted so approximating as partially
// mixed quoted.
//
tt = type::word;
t = token (move (concat_data.value),
true,
quoted ? quote_type::mixed : quote_type::unquoted,
false, quoted_first,
t.line, t.column);
}
else if (!first)
{
// If we are chunking, stop at the next separated token.
//
next (t, tt);
if (chunk && t.separated)
break;
// If we are parsing the pattern group, then space-separated tokens
// must start inclusions or exclusions (see above).
//
if (rpat && t.separated && tt != type::rcbrace && !pattern_prefix (t))
fail (t) << "expected name pattern inclusion or exclusion";
}
// Name.
//
// A user may specify a value that is an invalid name (e.g., it contains
// '%' but the project name is invalid). While it may seem natural to
// expect quoting/escaping to be the answer, we may need to quote names
// (e.g., spaces in paths) and so in our model quoted values are still
// treated as names and we rely on reversibility if we need to treat
// them as values. The reasonable solution to the invalid name problem is
// then to treat them as values if they are quoted.
//
if (tt == type::word)
{
tt = peek ();
// Skip it in the pre-parse mode (any {...} that may follow will be
// handled as an untyped group below).
//
if (pre_parse_)
continue;
string val (move (t.value));
const location loc (get_location (t));
bool quoted (t.qtype != quote_type::unquoted);
bool quoted_first (t.qfirst);
// Should we accumulate? If the buffer is not empty, then we continue
// accumulating (the case where we are separated should have been
// handled by the injection code above). If the next token is a var
// expansion or eval context and it is not separated, then we need to
// start accumulating.
//
if (concat || // Continue.
!last_concat ()) // Start.
{
bool e (val.empty ());
// If LHS is typed then do typed concatenation.
//
if (concat && vtype != nullptr)
{
// Create untyped RHS.
//
names ns;
ns.push_back (name (move (val)));
concat_typed (value (move (ns)), get_location (t));
}
else
{
auto& v (concat_data.value);
if (v.empty ())
v = move (val);
else
v += val;
}
// Consider something like this: ""$foo where foo='+foo'. Should we
// treat the plus as a first (unquoted) character? Feels like we
// should not. The way we achieve this is a bit hackish: we make it
// look like a quoted first character. Note that there is a second
// half of this in expansion case which deals with $empty+foo.
//
if (!concat) // First.
concat_quoted_first = quoted_first || e;
concat_quoted = quoted || concat_quoted;
concat = true;
continue;
}
// Find a separator (slash or %).
//
string::size_type pos (separators != nullptr
? val.find_last_of (*separators)
: string::npos);
// First take care of project. A project-qualified name is not very
// common, so we can afford some copying for the sake of simplicity.
//
optional<project_name> p1;
const optional<project_name>* pp1 (&pp);
if (pos != string::npos)
{
bool last (val[pos] == '%');
string::size_type q (last ? pos : val.rfind ('%', pos - 1));
for (; q != string::npos; ) // Breakout loop.
{
// Process the project name.
//
string proj (val, 0, q);
try
{
p1 = !proj.empty ()
? project_name (move (proj))
: project_name ();
}
catch (const invalid_argument& e)
{
if (quoted) // See above.
break;
fail (loc) << "invalid project name '" << proj << "': " << e;
}
if (pp)
fail (loc) << "nested project name " << *p1;
pp1 = &p1;
// Now fix the rest of the name.
//
val.erase (0, q + 1);
pos = last ? string::npos : pos - (q + 1);
break;
}
}
size_t size (pos != string::npos ? val.size () - 1 : 0);
// See if this is a type name, directory prefix, or both. That
// is, it is followed by an un-separated '{'.
//
if (tt == type::lcbrace && !peeked ().separated)
{
next (t, tt);
// Resolve the target, if there is one, for the potential pattern
// inclusion group. If we fail, then this is not an inclusion group.
//
const target_type* ttp (nullptr);
if (pinc)
{
assert (val == "+");
if (tp != nullptr && scope_ != nullptr)
{
ttp = scope_->find_target_type (*tp);
if (ttp == nullptr)
ppat = pinc = false;
}
}
if (pos != size && tp != nullptr && !pinc)
fail (loc) << "nested type name " << val;
dir_path d1;
const dir_path* dp1 (dp);
string t1;
const string* tp1 (tp);
try
{
if (pos == string::npos) // type
tp1 = &val;
else if (pos == size) // directory
{
if (dp == nullptr)
d1 = dir_path (val);
else
d1 = *dp / dir_path (val);
dp1 = &d1;
}
else // both
{
t1.assign (val, pos + 1, size - pos);
if (dp == nullptr)
d1 = dir_path (val, 0, pos + 1);
else
d1 = *dp / dir_path (val, 0, pos + 1);
dp1 = &d1;
tp1 = &t1;
}
}
catch (const invalid_path& e)
{
fail (loc) << "invalid path '" << e.path << "'";
}
count = parse_names_trailer (
t, tt, ns, pmode, what, separators, pairn, *pp1, dp1, tp1, cross);
// If empty group or empty name, then this is not a pattern inclusion
// group (see above).
//
if (pinc)
{
if (count != 0 && (count > 1 || !ns.back ().empty ()))
pattern_detected (ttp);
ppat = pinc = false;
}
tt = peek ();
continue;
}
// See if this is a pattern, path or regex.
//
// A path pattern either contains an unquoted wildcard character or,
// in the curly context, starts with unquoted/unescaped `+`.
//
// A regex pattern starts with unquoted/unescaped `~` followed by a
// non-alphanumeric delimiter and has the following form:
//
// ~/<pat>/[<flags>]
//
// A regex substitution starts with unquoted/unescaped '^' followed by
// a non-alphanumeric delimiter and has the follwing form:
//
// ^/<sub>/[<flags>]
//
// Any non-alphanumeric character other that `/` can be used as a
// delimiter but escaping of the delimiter character is not supported
// (one benefit of this is that we can store and print the pattern as
// is without worrying about escaping; the non-alphanumeric part is to
// allow values like ~host and ^cat).
//
// The following pattern flags are recognized:
//
// i -- match ignoring case
// e -- match including extension
//
// Note that we cannot express certain path patterns that start with
// the regex introducer using quoting (for example, `~*`) since
// quoting prevents the whole from being recognized as a path
// pattern. However, we can achieve this with escaping (for example,
// \~*). This works automatically since we treat (at the lexer level)
// escaped first characters as quoted without treating the whole thing
// as quoted. Note that there is also the corresponding logic in
// to_stream(name).
//
// A pattern cannot be project-qualified.
//
optional<pattern_type> pat;
if (pmode != pattern_mode::ignore && !*pp1)
{
// Note that in the general case we need to convert it to a path
// prior to testing for being a pattern (think of b[a/r] that is not
// a pattern).
//
auto path_pattern = [&val, &loc, this] ()
{
// Let's optimize it a bit for the common cases.
//
if (val.find_first_of ("*?[") == string::npos)
return false;
if (path_traits::find_separator (val) == string::npos)
return build2::path_pattern (val);
try
{
return build2::path_pattern (path (val));
}
catch (const invalid_path& e)
{
fail (loc) << "invalid path '" << e.path << "'" << endf;
}
};
auto regex_pattern = [&val] ()
{
return ((val[0] == '~' || val[0] == '^') &&
val[1] != '\0' && !alnum (val[1]));
};
if (pmode != pattern_mode::preserve)
{
// Note that if we have no base directory or cannot resolve the
// target type, then this affectively becomes the ignore mode.
//
if (pbase_ != nullptr || (dp != nullptr && dp->absolute ()))
{
// Note that we have to check for regex patterns first since
// they may also be detected as path patterns.
//
if (!quoted_first && !path_concat && regex_pattern ())
{
// Note: we may decide to support regex-based name generation
// some day (though a substitution won't make sense here).
//
fail (loc) << "regex pattern-based name generation" <<
info << "quote '" << val << "' (or escape first character) "
<< "to treat it as literal name (or path pattern)";
}
else if ((!quoted && path_pattern ()) ||
(!quoted_first && curly && val[0] == '+'))
{
// Resolve the target type if there is one.
//
const target_type* ttp (tp != nullptr && scope_ != nullptr
? scope_->find_target_type (*tp)
: nullptr);
if (tp == nullptr || ttp != nullptr)
{
if (pmode == pattern_mode::detect)
{
// Strip the literal unquoted plus character for the first
// pattern in the group.
//
if (ppat)
{
assert (val[0] == '+');
val.erase (0, 1);
ppat = pinc = false;
}
// Set the detect pattern mode to expand if the pattern is
// not followed by the inclusion/exclusion pattern/match.
// Note that if it is '}' (i.e., the end of the group),
// then it is a single pattern and the expansion is what
// we want.
//
if (!pattern_prefix (peeked ()))
pmode = pattern_mode::expand;
}
if (pmode == pattern_mode::expand)
{
count = expand_name_pattern (get_location (t),
names {name (move (val))},
ns,
what,
pairn,
dp, tp, ttp);
continue;
}
pattern_detected (ttp);
// Fall through.
}
}
}
}
else
{
// For the preserve mode we treat it as a pattern if it look like
// one syntactically. For now we also don't treat leading `+` in
// the curly context as an indication of a path pattern (since
// there isn't any good reason to; see also to_stream(name) for
// the corresponding serialization logic).
//
if (!quoted_first && !path_concat && regex_pattern ())
{
const char* w;
if (val[0] == '~')
{
w = "regex pattern";
pat = pattern_type::regex_pattern;
}
else
{
w = "regex substitution";
pat = pattern_type::regex_substitution;
}
size_t n (val.size ());
// Verify delimiters and find the position of the flags.
//
char d (val[1]);
size_t p (val.rfind (d));
if (p == 1)
{
fail (loc) << "no trailing delimiter '" << d << "' in "
<< w << " '" << val << "'" <<
info << "quote '" << val << "' (or escape first character) "
<< "to treat it as literal name (or path pattern)";
}
// Verify flags.
//
for (size_t i (++p); i != n; ++i)
{
char f (val[i]);
if (*pat == pattern_type::regex_pattern)
{
if (f == 'i' || f == 'e')
continue;
}
fail (loc) << "unknown flag '" << f << "' in " << w << " '"
<< val << "'";
}
val.erase (0, 1); // Remove `~` or `^`.
// Make sure we don't treat something like `~/.../` as a
// directory.
//
pos = string::npos;
size = 0;
}
else if (!quoted && path_pattern ())
pat = pattern_type::path;
}
}
// If this is a concatenation of the path or dir_path type and it is
// not a pattern, then handle it in the same way as concatenations of
// other types (see above).
//
if (path_concat && !pat)
{
ns.push_back (move (path_concat->second));
// Restore the type information if that's the only name.
//
if (start == ns.size () && last_token ())
vtype = path_concat->first;
// Restart the loop.
//
continue;
}
// If we are a second half of a pair, add another first half
// unless this is the first instance.
//
if (pairn != 0 && pairn != ns.size ())
ns.push_back (ns[pairn - 1]);
count = 1;
// If it ends with a directory separator, then it is a directory.
// Note that at this stage we don't treat '.' and '..' as special
// (unless they are specified with a directory separator) because
// then we would have ended up treating '.: ...' as a directory
// scope. Instead, this is handled higher up the processing chain,
// in scope::find_target_type(). This would also mess up
// reversibility to simple name.
//
// Note: a regex pattern cannot be a directory (see above).
//
if (pos == size)
{
// For reversibility to simple name, only treat it as a directory
// if the string is an exact representation.
//
dir_path dir (move (val), dir_path::exact);
if (!dir.empty ())
{
if (dp != nullptr)
dir = *dp / dir;
append_name (
ns,
*pp1, move (dir), (tp != nullptr ? *tp : string ()), string (),
pat, loc);
continue;
}
}
append_name (ns,
*pp1,
(dp != nullptr ? *dp : dir_path ()),
(tp != nullptr ? *tp : string ()),
move (val),
pat,
loc);
continue;
}
// Expanions: variable expansion, function call, or eval context.
//
if (tt == type::dollar || tt == type::lparen)
{
if (ctx == nullptr)
fail << "literal " << what << " expected";
// These cases are pretty similar in that in both we quickly end up
// with a list of names that we need to splice into the result.
//
location loc;
value result_data;
const value* result (&result_data);
const char* what; // Variable, function, or evaluation context.
bool quoted (t.qtype != quote_type::unquoted);
// We only recognize value subscripts inside eval contexts due to the
// ambiguity with wildcard patterns (consider: $x[123].txt).
//
bool sub (mode () == lexer_mode::eval);
if (tt == type::dollar)
{
// Switch to the variable name mode. We want to use this mode for
// $foo but not for $(foo). Since we don't know whether the next
// token is a paren or a word, we turn it on and switch to the eval
// mode if what we get next is a paren.
//
// Also sniff out the special variables string from mode data for
// the ad hoc $() handling below.
//
mode (lexer_mode::variable);
auto special = [s = reinterpret_cast<const char*> (mode_data ())]
(const token& t) -> char
{
char r ('\0');
if (s != nullptr)
{
switch (t.type)
{
case type::less: r = '<'; break;
case type::greater: r = '>'; break;
case type::colon: r = ':'; break;
case type::dollar: r = '$'; break;
case type::question: r = '?'; break;
case type::comma: r = ','; break;
case type::backtick: r = '`'; break;
case type::bit_or: r = '|'; break;
case type::log_not: r = '!'; break;
case type::lparen: r = '('; break;
case type::rparen: r = ')'; break;
case type::lcbrace: r = '{'; break;
case type::rcbrace: r = '}'; break;
case type::lsbrace: r = '['; break;
case type::rsbrace: r = ']'; break;
case type::pair_separator: r = t.value[0]; break;
default: break;
}
if (r != '\0' && strchr (s, r) == nullptr)
r = '\0';
}
return r;
};
next (t, tt);
loc = get_location (t);
names qual;
string name;
if (t.separated)
; // Leave the name empty to fail below.
else if (tt == type::word)
{
name = move (t.value);
}
else if (tt == type::lparen)
{
expire_mode ();
mode (lexer_mode::eval, '@');
next_with_attributes (t, tt);
// Handle the $(x) case ad hoc. We do it this way in order to get
// the variable name even during pre-parse. It should also be
// faster.
//
char c;
if ((tt == type::word
? path_traits::rfind_separator (t.value) == string::npos
: (c = special (t))) &&
peek () == type::rparen)
{
name = (tt == type::word ? move (t.value) : string (1, c));
next (t, tt); // Get `)`.
}
else
{
using name_type = build2::name;
values vs (parse_eval (t, tt, pmode));
if (!pre_parse_)
{
if (vs.size () != 1)
fail (loc) << "expected single variable/function name";
value& v (vs[0]);
if (!v)
fail (loc) << "null variable/function name";
names storage;
vector_view<name_type> ns (reverse (v, storage)); // Movable.
size_t n (ns.size ());
// We cannot handle scope-qualification in the eval context as
// we do for target-qualification (see eval-qual) since then
// we would be treating all paths as qualified variables. So
// we have to do it here.
//
if (n >= 2 && ns[0].pair == ':') // $(foo: x)
{
// Note: name is first (see eval for details).
//
qual.push_back (move (ns[1]));
if (qual.back ().empty ())
fail (loc) << "empty variable/function qualification";
if (n > 2)
qual.push_back (move (ns[2]));
// Move name to the last position (see below).
//
swap (ns[0], ns[n - 1]);
}
else if (n == 2 && ns[0].directory ()) // $(foo/ x)
{
qual.push_back (move (ns[0]));
qual.back ().pair = '/';
}
else if (n > 1)
fail (loc) << "expected variable/function name instead of '"
<< ns << "'";
// Note: checked for empty below.
//
if (!ns[n - 1].simple ())
fail (loc) << "expected variable/function name instead of '"
<< ns[n - 1] << "'";
size_t p;
if (n == 1 && // $(foo/x)
(p = path_traits::rfind_separator (ns[0].value)) !=
string::npos)
{
// Note that p cannot point to the last character since then
// it would have been a directory, not a simple name.
//
string& s (ns[0].value);
name = string (s, p + 1);
s.resize (p + 1);
qual.push_back (name_type (dir_path (move (s))));
qual.back ().pair = '/';
}
else
name = move (ns[n - 1].value);
}
}
}
else
fail (t) << "expected variable/function name instead of " << t;
if (!pre_parse_ && name.empty ())
fail (loc) << "empty variable/function name";
// Figure out whether this is a variable expansion with potential
// subscript or a function call.
//
if (sub) enable_subscript ();
tt = peek ();
// Note that we require function call opening paren to be
// unseparated; consider: $x ($x == 'foo' ? 'FOO' : 'BAR').
//
if (tt == type::lparen && !peeked ().separated)
{
// Function call.
//
next (t, tt); // Get '('.
mode (lexer_mode::eval, '@');
next_with_attributes (t, tt);
// @@ Should we use (target/scope) qualification (of name) as the
// context in which to call the function? Hm, interesting...
//
values args (parse_eval (t, tt, pmode));
if (sub) enable_subscript ();
tt = peek ();
// Note that we "move" args to call().
//
if (!pre_parse_)
{
result_data = ctx->functions.call (scope_, name, args, loc);
what = "function call";
}
else
lookup_function (move (name), loc);
}
else
{
// Variable expansion.
//
lookup l (lookup_variable (move (qual), move (name), loc));
if (!pre_parse_)
{
if (l.defined ())
result = l.value; // Otherwise leave as NULL result_data.
what = "variable expansion";
}
}
}
else
{
// Evaluation context.
//
loc = get_location (t);
mode (lexer_mode::eval, '@');
next_with_attributes (t, tt);
values vs (parse_eval (t, tt, pmode));
if (sub) enable_subscript ();
tt = peek ();
if (!pre_parse_)
{
switch (vs.size ())
{
case 0: result_data = value (names ()); break;
case 1: result_data = move (vs[0]); break;
default: fail (loc) << "expected single value";
}
what = "context evaluation";
}
}
// Handle value subscript.
//
if (tt == type::lsbrace && mode () == lexer_mode::eval)
{
location bl (get_location (t));
next (t, tt); // `[`
mode (lexer_mode::subscript, '\0' /* pair */);
next (t, tt);
location l (get_location (t));
value v (
tt != type::rsbrace
? parse_value (t, tt, pattern_mode::ignore, "value subscript")
: value (names ()));
if (tt != type::rsbrace)
{
// Note: wildcard pattern should have `]` as well so no escaping
// suggestion.
//
fail (t) << "expected ']' instead of " << t;
}
if (!pre_parse_)
{
uint64_t j;
try
{
j = convert<uint64_t> (move (v));
}
catch (const invalid_argument& e)
{
fail (l) << "invalid value subscript: " << e <<
info (bl) << "use the '\\[' escape sequence if this is a "
<< "wildcard pattern" << endf;
}
// Similar to expanding an undefined variable, we return NULL if
// the index is out of bounds.
//
// Note that result may or may not point to result_data.
//
if (result->null)
result_data = value ();
else if (result->type == nullptr)
{
const names& ns (result->as<names> ());
// Pair-aware subscript.
//
names r;
for (auto i (ns.begin ()); i != ns.end (); ++i, --j)
{
if (j == 0)
{
r.push_back (*i);
if (i->pair)
r.push_back (*++i);
break;
}
if (i->pair)
++i;
}
result_data = r.empty () ? value () : value (move (r));
}
else
{
// Similar logic to parse_for().
//
// @@ Maybe we should invent type-aware subscript? Could also
// be used for non-index subscripts (map keys etc).
//
const value_type* etype (result->type->element_type);
value val (result == &result_data
? value (move (result_data))
: value (*result));
untypify (val);
names& ns (val.as<names> ());
// Pair-aware subscript.
//
names r;
for (auto i (ns.begin ()); i != ns.end (); ++i, --j)
{
bool p (i->pair);
if (j == 0)
{
r.push_back (move (*i));
if (p)
r.push_back (move (*++i));
break;
}
if (p)
++i;
}
result_data = r.empty () ? value () : value (move (r));
if (etype != nullptr)
typify (result_data, *etype, nullptr /* var */);
}
result = &result_data;
}
tt = peek ();
}
if (pre_parse_)
continue; // As if empty result.
// Should we accumulate? If the buffer is not empty, then we continue
// accumulating (the case where we are separated should have been
// handled by the injection code above). If the next token is a word
// or an expansion and it is not separated, then we need to start
// accumulating. We also reduce the $var{...} case to concatention
// and injection.
//
if (concat || // Continue.
!last_concat (type::lcbrace)) // Start.
{
// This can be a typed or untyped concatenation. The rules that
// determine which one it is are as follows:
//
// 1. Determine if to preserver the type of RHS: if its first
// token is quoted, then we do not.
//
// 2. Given LHS (if any) and RHS we do typed concatenation if
// either is typed.
//
// Here are some interesting corner cases to meditate on:
//
// $dir/"foo bar"
// $dir"/foo bar"
// "foo"$dir
// "foo""$dir"
// ""$dir
//
// First if RHS is typed but quoted then convert it to an untyped
// string.
//
// Conversion to an untyped string happens differently, depending
// on whether we are in a quoted or unquoted context. In an
// unquoted context we use $representation() which must return a
// "round-trippable representation" (and if that it not possible,
// then it should not be overloaded for a type). In a quoted
// context we use $string() which returns a "canonical
// representation" (e.g., a directory path without a trailing
// slash).
//
if (result->type != nullptr && quoted)
{
// RHS is already a value but it could be a const reference (to
// the variable value) while we need to move things around. So in
// this case we make a copy.
//
if (result != &result_data)
result = &(result_data = *result);
const char* t (result_data.type->name);
pair<value, bool> p;
{
// Print the location information in case the function fails.
//
auto df = make_diag_frame (
[this, &loc, t] (const diag_record& dr)
{
dr << info (loc) << "while converting " << t << " to string";
});
if (ctx == nullptr)
fail << "literal " << what << " expected";
p = ctx->functions.try_call (
scope_, "string", vector_view<value> (&result_data, 1), loc);
}
if (!p.second)
fail (loc) << "no string conversion for " << t;
result_data = move (p.first);
untypify (result_data); // Convert to untyped simple name.
}
if ((concat && vtype != nullptr) || // LHS typed.
(result->type != nullptr)) // RHS typed.
{
if (result != &result_data) // Same reason as above.
result = &(result_data = *result);
concat_typed (move (result_data), loc);
}
//
// Untyped concatenation. Note that if RHS is NULL/empty, we still
// set the concat flag.
//
else if (!result->null && !result->empty ())
{
// This can only be an untyped value.
//
// @@ Could move if result == &result_data.
//
const names& lv (cast<names> (*result));
// This should be a simple value or a simple directory.
//
if (lv.size () > 1)
{
diag_record dr (fail (loc));
dr << "concatenating " << what << " contains multiple values";
// See if this looks like a subscript without an evaluation
// context and help the user out.
//
if (mode () != lexer_mode::eval)
{
const token& t (peeked ()); // Should be peeked at.
if (t.type == type::word &&
t.qtype == quote_type::unquoted &&
t.value[0] == '[')
{
dr << info << "wrap it in (...) evaluation context if this "
<< "is value subscript";
}
}
}
const name& n (lv[0]);
if (n.qualified ())
fail (loc) << "concatenating " << what << " contains project "
<< "name";
if (n.typed ())
fail (loc) << "concatenating " << what << " contains type";
if (!n.dir.empty ())
{
if (!n.value.empty ())
fail (loc) << "concatenating " << what << " contains "
<< "directory";
// Note that here we cannot assume what's in dir is really a
// path (think s/foo/bar/) so we have to reverse it exactly.
//
concat_data.value += n.dir.representation ();
}
else
concat_data.value += n.value;
}
// The same little hack as in the word case ($empty+foo).
//
if (!concat) // First.
concat_quoted_first = true;
concat_quoted = quoted || concat_quoted;
concat = true;
}
else
{
// See if we should propagate the value NULL/type. We only do this
// if this is the only expansion, that is, it is the first and the
// next token is not part of the name.
//
if (first && last_token ())
{
vnull = result->null;
vtype = result->type;
rvalue = true;
}
// Nothing else to do here if the result is NULL or empty.
//
if (result->null || result->empty ())
continue;
// @@ Could move if nv is result_data; see untypify().
//
names nv_storage;
names_view nv (reverse (*result, nv_storage));
count = splice_names (
loc, nv, move (nv_storage), ns, what, pairn, pp, dp, tp);
}
continue;
}
// Untyped name group without a directory prefix, e.g., '{foo bar}'.
//
if (tt == type::lcbrace)
{
count = parse_names_trailer (
t, tt, ns, pmode, what, separators, pairn, pp, dp, tp, cross);
tt = peek ();
continue;
}
// A pair separator.
//
if (tt == type::pair_separator)
{
if (pairn != 0)
fail (t) << "nested pair on the right hand side of a pair";
tt = peek ();
if (!pre_parse_)
{
// Catch double pair separator ('@@'). Maybe we can use for
// something later (e.g., escaping).
//
if (!ns.empty () && ns.back ().pair)
fail (t) << "double pair separator";
if (t.separated || count == 0)
{
// Empty LHS, (e.g., @y), create an empty name. The second test
// will be in effect if we have something like v=@y.
//
append_name (ns,
pp,
(dp != nullptr ? *dp : dir_path ()),
(tp != nullptr ? *tp : string ()),
string (),
nullopt, /* pattern */
get_location (t));
count = 1;
}
else if (count > 1)
fail (t) << "multiple " << what << "s on the left hand side "
<< "of a pair";
ns.back ().pair = t.value[0];
// If the next token is separated, then we have an empty RHS. Note
// that the case where it is not a name/group (e.g., a newline/eos)
// is handled below, once we are out of the loop.
//
if (peeked ().separated)
{
append_name (ns,
pp,
(dp != nullptr ? *dp : dir_path ()),
(tp != nullptr ? *tp : string ()),
string (),
nullopt, /* pattern */
get_location (t));
count = 0;
}
}
continue;
}
// Note: remember to update last_token() test if adding new recognized
// tokens.
if (!first)
break;
if (tt == type::rcbrace) // Empty name, e.g., {}.
{
// If we are a second half of a pair, add another first half
// unless this is the first instance.
//
if (pairn != 0 && pairn != ns.size ())
ns.push_back (ns[pairn - 1]);
append_name (ns,
pp,
(dp != nullptr ? *dp : dir_path ()),
(tp != nullptr ? *tp : string ()),
string (),
nullopt, /* pattern */
get_location (t));
break;
}
else
// Our caller expected this to be something.
//
fail (t) << "expected " << what << " instead of " << t;
}
// Handle the empty RHS in a pair, (e.g., y@).
//
if (!ns.empty () && ns.back ().pair)
{
append_name (ns,
pp,
(dp != nullptr ? *dp : dir_path ()),
(tp != nullptr ? *tp : string ()),
string (),
nullopt, /* pattern */
get_location (t));
}
if (pre_parse_)
assert (!rvalue && !vnull && vtype == nullptr && !rpat);
return parse_names_result {rvalue, !vnull, vtype, rpat};
}
void parser::
skip_line (token& t, type& tt)
{
for (; tt != type::newline && tt != type::eos; next (t, tt)) ;
}
void parser::
skip_block (token& t, type& tt)
{
// Skip until } or eos, keeping track of the {}-balance.
//
for (size_t b (0); tt != type::eos; )
{
if (tt == type::lcbrace || tt == type::rcbrace)
{
type ptt (peek ());
if (ptt == type::newline || ptt == type::eos) // Block { or }.
{
if (tt == type::lcbrace)
++b;
else
{
if (b == 0)
break;
--b;
}
}
}
skip_line (t, tt);
if (tt != type::eos)
next (t, tt);
}
}
bool parser::
keyword (const token& t)
{
assert (replay_ != replay::play); // Can't be used in a replay.
assert (t.type == type::word);
// The goal here is to allow using keywords as variable names and
// target types without imposing ugly restrictions/decorators on
// keywords (e.g., '.using' or 'USING'). A name is considered a
// potential keyword if:
//
// - it is not quoted [so a keyword can always be escaped] and
// - next token is '\n' (or eos) or '(' [so if(...) will work] or
// - next token is separated and is not '=', '=+', '+=', or '?=' [which
// means a "directive trailer" can never start with one of them].
//
// See tests/keyword.
//
if (t.qtype == quote_type::unquoted)
{
// We cannot peek at the whole token here since it might have to be
// lexed in a different mode. So peek at its first character.
//
pair<pair<char, char>, bool> p (lexer_->peek_chars ());
char c0 (p.first.first);
char c1 (p.first.second);
// Note that just checking for leading '+'/'?' is not sufficient, for
// example:
//
// print +foo
//
// So we peek at one more character since what we expect next ('=')
// can't be whitespace-separated.
//
return c0 == '\n' || c0 == '\0' || c0 == '(' ||
(p.second &&
c0 != '=' &&
(c0 != '+' || c1 != '=') &&
(c0 != '?' || c1 != '='));
}
return false;
}
// Buildspec parsing.
//
// Here is the problem: we "overload" '(' and ')' to mean operation
// application rather than the eval context. At the same time we want to use
// parse_names() to parse names, get variable expansion/function calls,
// quoting, etc. We just need to disable the eval context. The way this is
// done has two parts: Firstly, we parse names in chunks and detect and
// handle the opening paren ourselves. In other words, a buildspec like
// 'clean (./)' is "chunked" as 'clean', '(', etc. While this is fairly
// straightforward, there is one snag: concatenating eval contexts, as in
// 'clean(./)'. Normally, this will be treated as a single chunk and we
// don't want that. So here comes the trick (or hack, if you like): the
// buildspec lexer mode makes every opening paren token "separated" (i.e.,
// as if it was preceeded by a space). This will disable concatenating
// eval.
//
// In fact, because this is only done in the buildspec mode, we can still
// use eval contexts provided that we quote them: '"cle(an)"'. Note that
// function calls also need quoting (since a separated '(' is not treated as
// a function call): '"$identity(update)"'.
//
// This poses a problem, though: if it's quoted then it is a concatenated
// expansion and therefore cannot contain multiple values, for example,
// $identity(foo/ bar/). So what we do is disable this chunking/separation
// after both meta-operation and operation were specified. So if we specify
// both explicitly, then we can use eval context, function calls, etc.,
// normally: perform(update($identity(foo/ bar/))).
//
buildspec parser::
parse_buildspec (istream& is, const path_name& in)
{
// We do "effective escaping" and only for ['"\$(] (basically what's
// necessary inside a double-quoted literal plus the single quote).
//
path_ = ∈
lexer l (is, *path_, 1 /* line */, "\'\"\\$(");
lexer_ = &l;
root_ = &ctx->global_scope.rw ();
scope_ = root_;
target_ = nullptr;
prerequisite_ = nullptr;
pbase_ = &work; // Use current working directory.
// Turn on the buildspec mode/pairs recognition with '@' as the pair
// separator (e.g., src_root/@out_root/exe{foo bar}).
//
mode (lexer_mode::buildspec, '@');
token t;
type tt;
next (t, tt);
buildspec r (tt != type::eos
? parse_buildspec_clause (t, tt)
: buildspec ());
if (tt != type::eos)
fail (t) << "expected operation or target instead of " << t;
return r;
}
static bool
opname (const name& n)
{
// First it has to be a non-empty simple name.
//
if (n.pair || !n.simple () || n.empty ())
return false;
// Like C identifier but with '-' instead of '_' as the delimiter.
//
for (size_t i (0); i != n.value.size (); ++i)
{
char c (n.value[i]);
if (c != '-' && !(i != 0 ? alnum (c) : alpha (c)))
return false;
}
return true;
}
buildspec parser::
parse_buildspec_clause (token& t, type& tt, size_t depth)
{
buildspec bs;
for (bool first (true);; first = false)
{
// We always start with one or more names. Eval context (lparen) only
// allowed if quoted.
//
if (!start_names (tt, mode () == lexer_mode::double_quoted))
{
if (first)
fail (t) << "expected operation or target instead of " << t;
break;
}
const location l (get_location (t)); // Start of names.
// This call will parse the next chunk of output and produce zero or
// more names.
//
names ns (parse_names (t, tt, pattern_mode::expand, depth < 2));
if (ns.empty ()) // Can happen if pattern expansion.
fail (l) << "expected operation or target";
// What these names mean depends on what's next. If it is an opening
// paren, then they are operation/meta-operation names. Otherwise they
// are targets.
//
if (tt == type::lparen) // Got by parse_names().
{
if (ns.empty ())
fail (t) << "expected operation name before '('";
for (const name& n: ns)
if (!opname (n))
fail (l) << "expected operation name instead of '" << n << "'";
// Inside '(' and ')' we have another, nested, buildspec. Push another
// mode to keep track of the depth (used in the lexer implementation
// to decide when to stop separating '(').
//
mode (lexer_mode::buildspec, '@');
next (t, tt); // Get what's after '('.
const location l (get_location (t)); // Start of nested names.
buildspec nbs (parse_buildspec_clause (t, tt, depth + 1));
// Parse additional operation/meta-operation parameters.
//
values params;
while (tt == type::comma)
{
next (t, tt);
// Note that for now we don't expand patterns. If it turns out we
// need this, then will probably have to be (meta-) operation-
// specific (via pre-parse or some such).
//
params.push_back (tt != type::rparen
? parse_value (t, tt, pattern_mode::ignore)
: value (names ()));
}
if (tt != type::rparen)
fail (t) << "expected ')' instead of " << t;
expire_mode ();
next (t, tt); // Get what's after ')'.
// Merge the nested buildspec into ours. But first determine if we are
// an operation or meta-operation and do some sanity checks.
//
bool meta (false);
for (const metaopspec& nms: nbs)
{
// We definitely shouldn't have any meta-operations.
//
if (!nms.name.empty ())
fail (l) << "nested meta-operation " << nms.name;
if (!meta)
{
// If we have any operations in the nested spec, then this mean
// that our names are meta-operation names.
//
for (const opspec& nos: nms)
{
if (!nos.name.empty ())
{
meta = true;
break;
}
}
}
}
// No nested meta-operations means we should have a single metaopspec
// object with empty meta-operation name.
//
assert (nbs.size () == 1);
const metaopspec& nmo (nbs.back ());
if (meta)
{
for (name& n: ns)
{
bs.push_back (nmo);
bs.back ().name = move (n.value);
bs.back ().params = params;
}
}
else
{
// Since we are not a meta-operation, the nested buildspec should be
// just a bunch of targets.
//
assert (nmo.size () == 1);
const opspec& nos (nmo.back ());
if (bs.empty () || !bs.back ().name.empty ())
bs.push_back (metaopspec ()); // Empty (default) meta operation.
for (name& n: ns)
{
bs.back ().push_back (nos);
bs.back ().back ().name = move (n.value);
bs.back ().back ().params = params;
}
}
}
else if (!ns.empty ())
{
// Group all the targets into a single operation. In other
// words, 'foo bar' is equivalent to 'update(foo bar)'.
//
if (bs.empty () || !bs.back ().name.empty ())
bs.push_back (metaopspec ()); // Empty (default) meta operation.
metaopspec& ms (bs.back ());
for (auto i (ns.begin ()), e (ns.end ()); i != e; ++i)
{
// @@ We may actually want to support this at some point.
//
if (i->qualified ())
fail (l) << "expected target name instead of " << *i;
if (opname (*i))
ms.push_back (opspec (move (i->value)));
else
{
// Do we have the src_base?
//
dir_path src_base;
if (i->pair)
{
if (i->pair != '@')
fail << "unexpected pair style in buildspec";
if (i->typed ())
fail (l) << "expected target src_base instead of " << *i;
src_base = move (i->dir);
if (!i->value.empty ())
src_base /= dir_path (move (i->value));
++i;
assert (i != e); // Got to have the second half of the pair.
}
if (ms.empty () || !ms.back ().name.empty ())
ms.push_back (opspec ()); // Empty (default) operation.
opspec& os (ms.back ());
os.emplace_back (move (src_base), move (*i));
}
}
}
}
return bs;
}
lookup parser::
lookup_variable (names&& qual, string&& name, const location& loc)
{
if (pre_parse_)
return lookup ();
tracer trace ("parser::lookup_variable", &path_);
const scope* s (nullptr);
const target* t (nullptr);
const prerequisite* p (nullptr);
// If we are qualified, it can be a scope or a target.
//
enter_scope sg;
enter_target tg;
if (qual.empty ())
{
s = scope_;
t = target_;
p = prerequisite_;
}
else
{
switch (qual.front ().pair)
{
case '/':
{
assert (qual.front ().directory ());
sg = enter_scope (*this, move (qual.front ().dir));
s = scope_;
break;
}
default:
{
build2::name n (move (qual.front ())), o;
if (n.pair)
o = move (qual.back ());
tg = enter_target (*this, move (n), move (o), true, loc, trace);
t = target_;
break;
}
}
}
// Lookup.
//
if (const variable* pvar = scope_->var_pool ().find (name))
{
auto& var (*pvar);
if (p != nullptr)
{
// The lookup depth is a bit of a hack but should be harmless since
// unused.
//
pair<lookup, size_t> r (p->vars[var], 1);
if (!r.first.defined ())
r = t->lookup_original (var);
return var.overrides == nullptr
? r.first
: t->base_scope ().lookup_override (var, move (r), true).first;
}
if (t != nullptr)
{
if (var.visibility > variable_visibility::target)
{
fail (loc) << "variable " << var << " has " << var.visibility
<< " visibility but is expanded in target context";
}
return (*t)[var];
}
if (s != nullptr)
{
if (var.visibility > variable_visibility::scope)
{
fail (loc) << "variable " << var << " has " << var.visibility
<< " visibility but is expanded in scope context";
}
return (*s)[var];
}
}
return lookup ();
}
void parser::
lookup_function (string&&, const location&)
{
assert (pre_parse_);
}
auto_project_env parser::
switch_scope (const dir_path& d)
{
tracer trace ("parser::switch_scope", &path_);
auto_project_env r;
// Switching the project during bootstrap can result in bizarre nesting
// with unexpected loading order (e.g., config.build are loaded from inner
// to outter rather than the expected reverse). On the other hand, it can
// be handy to assign a variable for a nested scope in config.build. So
// for this stage we are going to switch the scope without switching the
// project expecting the user to know what they are doing.
//
bool proj (stage_ != stage::boot);
auto p (build2::switch_scope (*root_, d, proj));
scope_ = &p.first;
pbase_ = scope_->src_path_ != nullptr ? scope_->src_path_ : &d;
if (proj && p.second != root_)
{
root_ = p.second;
if (root_ != nullptr)
r = auto_project_env (*root_);
l5 ([&]
{
if (root_ != nullptr)
trace << "switching to root scope " << *root_;
else
trace << "switching to out of project scope";
});
}
return r;
}
void parser::
process_default_target (token& t)
{
tracer trace ("parser::process_default_target", &path_);
// The logic is as follows: if we have an explicit current directory
// target, then that's the default target. Otherwise, we take the
// first target and use it as a prerequisite to create an implicit
// current directory target, effectively making it the default
// target via an alias. If there are no targets in this buildfile,
// then we don't do anything.
//
if (default_target_ == nullptr) // No targets in this buildfile.
return;
target& dt (*default_target_);
target* ct (
const_cast<target*> ( // Ok (serial execution).
ctx->targets.find (dir::static_type, // Explicit current dir target.
scope_->out_path (),
dir_path (), // Out tree target.
string (),
nullopt,
trace)));
if (ct == nullptr)
{
l5 ([&]{trace (t) << "creating current directory alias for " << dt;});
// While this target is not explicitly mentioned in the buildfile, we
// say that we behave as if it were. Thus not implied.
//
ct = &ctx->targets.insert (dir::static_type,
scope_->out_path (),
dir_path (),
string (),
nullopt,
target_decl::real,
trace).first;
// Fall through.
}
else if (ct->decl != target_decl::real)
{
ct->decl = target_decl::real;
// Fall through.
}
else
return; // Existing and not implied.
ct->prerequisites_state_.store (2, memory_order_relaxed);
ct->prerequisites_.emplace_back (prerequisite (dt));
}
void parser::
enter_buildfile (const path& p)
{
tracer trace ("parser::enter_buildfile", &path_);
dir_path d (p.directory ()); // Empty for a path name with the NULL path.
// Figure out if we need out.
//
dir_path out;
if (scope_->src_path_ != nullptr &&
scope_->src_path () != scope_->out_path () &&
d.sub (scope_->src_path ()))
{
out = out_src (d, *root_);
}
ctx->targets.insert<buildfile> (
move (d),
move (out),
p.leaf ().base ().string (),
p.extension (), // Always specified.
trace);
}
type parser::
next (token& t, type& tt)
{
replay_token r;
if (peeked_)
{
r = move (peek_);
peeked_ = false;
}
else
r = replay_ != replay::play ? lexer_next () : replay_next ();
if (replay_ == replay::save)
replay_data_.push_back (r);
t = move (r.token);
tt = t.type;
return tt;
}
inline type parser::
next_after_newline (token& t, type& tt, char a)
{
if (tt == type::newline)
next (t, tt);
else if (tt != type::eos)
{
diag_record dr (fail (t));
dr << "expected newline instead of " << t;
if (a != '\0')
dr << " after '" << a << "'";
}
return tt;
}
inline type parser::
next_after_newline (token& t, type& tt, const char* a)
{
if (tt == type::newline)
next (t, tt);
else if (tt != type::eos)
{
diag_record dr (fail (t));
dr << "expected newline instead of " << t;
if (a != nullptr)
dr << " after " << a;
}
return tt;
}
inline type parser::
next_after_newline (token& t, type& tt, const token& a)
{
if (tt == type::newline)
next (t, tt);
else if (tt != type::eos)
{
diag_record dr (fail (t));
dr << "expected newline instead of " << t << " after " << a;
}
return tt;
}
type parser::
peek ()
{
if (!peeked_)
{
peek_ = (replay_ != replay::play ? lexer_next () : replay_next ());
peeked_ = true;
}
return peek_.token.type;
}
}
|