1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
|
// file : libbuild2/scope.hxx -*- C++ -*-
// license : MIT; see accompanying LICENSE file
#ifndef LIBBUILD2_SCOPE_HXX
#define LIBBUILD2_SCOPE_HXX
#include <libbuild2/types.hxx>
#include <libbuild2/forward.hxx>
#include <libbuild2/utility.hxx>
#include <libbuild2/module.hxx>
#include <libbuild2/context.hxx>
#include <libbuild2/variable.hxx>
#include <libbuild2/rule-map.hxx>
#include <libbuild2/operation.hxx>
#include <libbuild2/target-key.hxx>
#include <libbuild2/target-type.hxx>
#include <libbuild2/target-state.hxx>
#include <libbuild2/prerequisite-key.hxx>
#include <libbuild2/export.hxx>
namespace build2
{
class dir;
using subprojects = map<project_name, dir_path>;
// Print as name@dir sequence.
//
// Note: trailing slash is not printed for the directory path.
//
LIBBUILD2_SYMEXPORT ostream&
operator<< (ostream&, const subprojects&);
class LIBBUILD2_SYMEXPORT scope
{
public:
// Context this scope belongs to.
//
context& ctx;
// Absolute and normalized.
//
const dir_path& out_path () const {return *out_path_;}
const dir_path& src_path () const {return *src_path_;}
bool out_eq_src () const {return out_path_ == src_path_;}
// These are pointers to the keys in scope_map. The second can be NULL
// during bootstrap until initialized.
//
const dir_path* out_path_ = nullptr;
const dir_path* src_path_ = nullptr;
bool
root () const;
// Note that the *_scope() functions reaturn "logical" parent/root/etc
// scopes, taking into account the project's var_amalgamation value.
scope* parent_scope ();
const scope* parent_scope () const;
// Root scope of this scope or NULL if this scope is not (yet) in any
// (known) project. Note that if the scope itself is root, then this
// function return this. To get to the outer root, query the root scope of
// the parent.
//
scope* root_scope ();
const scope* root_scope () const;
// Root scope of the outermost "strong" (source-based) amalgamation of
// this scope that has a project name or NULL if this scope is not (yet)
// in any (known) project. If there is no bundle amalgamation, then this
// function returns the root scope of the project (in other words, in this
// case a project is treated as its own bundle, even if it's unnamed).
//
scope* bundle_scope ();
const scope* bundle_scope () const;
// Root scope of the outermost "strong" (source-based) amalgamation of
// this scope or NULL if this scope is not (yet) in any (known) project.
// If there is no strong amalgamation, then this function returns the root
// scope of the project (in other words, in this case a project is treated
// as its own strong amalgamation).
//
scope* strong_scope ();
const scope* strong_scope () const;
// Root scope of the outermost amalgamation or NULL if this scope is not
// (yet) in any (known) project. If there is no amalgamation, then this
// function returns the root scope of the project (in other words, in this
// case a project is treated as its own amalgamation).
//
scope* weak_scope ();
const scope* weak_scope () const;
// Global scope.
//
scope& global_scope () {return const_cast<scope&> (ctx.global_scope);}
const scope& global_scope () const {return ctx.global_scope;}
// Return true if the specified root scope is a sub-scope of (but not the
// same as) this root scope. Note that both scopes must be root.
//
bool
sub_root (const scope&) const;
// Variables.
//
public:
variable_map vars;
// Lookup, including in outer scopes. If you only want to lookup in this
// scope, do it on the the variables map directly (and note that there
// will be no overrides).
//
using lookup_type = build2::lookup;
lookup_type
operator[] (const variable& var) const
{
return lookup (var).first;
}
lookup_type
operator[] (const variable* var) const // For cached variables.
{
assert (var != nullptr);
return operator[] (*var);
}
lookup_type
operator[] (const string& name) const
{
const variable* var (var_pool ().find (name));
return var != nullptr ? operator[] (*var) : lookup_type ();
}
// As above, but include target type/pattern-specific variables.
//
lookup_type
lookup (const variable& var, const target_key& tk) const
{
return lookup (var, &tk).first;
}
lookup_type
lookup (const variable& var,
const target_key& tk,
const target_key& gk) const
{
return lookup (var, &tk, &gk).first;
}
// Note for dir{} and fsdir{} target name is the directory leaf (without
// the trailing slash). Also, if extension is to be matched (for this
// target type), then it should be included in the name.
//
lookup_type
lookup (const variable& var, const target_type& tt, const string& tn) const
{
return lookup (var, target_key {&tt, nullptr, nullptr, &tn, nullopt});
}
lookup_type
lookup (const variable& var,
const target_type& tt, const string& tn,
const target_type& gt, const string& gn) const
{
return lookup (var,
target_key {&tt, nullptr, nullptr, &tn, nullopt},
target_key {>, nullptr, nullptr, &gn, nullopt});
}
// Note that target keys may be incomplete (only type and name must be
// present plus dir for dir{} and fsdir{} targets if name is empty).
//
pair<lookup_type, size_t>
lookup (const variable& var,
const target_key* tk = nullptr,
const target_key* gk = nullptr) const
{
auto p (lookup_original (var, tk, gk));
return var.overrides == nullptr ? p : lookup_override (var, move (p));
}
// Implementation details (used by scope target lookup). The start_depth
// can be used to skip a number of initial lookups.
//
pair<lookup_type, size_t>
lookup_original (const variable&,
const target_key* tk = nullptr,
const target_key* g1k = nullptr,
const target_key* g2k = nullptr,
size_t start_depth = 1) const;
pair<lookup_type, size_t>
lookup_override (const variable& var,
pair<lookup_type, size_t> original,
bool target = false,
bool rule = false) const
{
return lookup_override_info (var, original, target, rule).lookup;
}
// As above but also return an indication of whether the resulting value
// is/is based (e.g., via append/prepend overrides) on the original or an
// "outright" override. Note that it will always be false if there is no
// original.
//
struct override_info
{
pair<lookup_type, size_t> lookup;
bool original;
};
override_info
lookup_override_info (const variable&,
pair<lookup_type, size_t> original,
bool target = false,
bool rule = false) const;
// Return a value suitable for assignment (or append if you only want to
// append to the value from this scope). If the value does not exist in
// this scope's map, then a new one with the NULL value is added and
// returned. Otherwise the existing value is returned.
//
value&
assign (const variable& var) {return vars.assign (var);}
value&
assign (const variable* var) {return vars.assign (var);} // For cached.
template <typename T>
T&
assign (const variable& var, T&& val)
{
value& v (assign (var) = forward<T> (val));
return v.as<T> ();
}
template <typename T>
T&
assign (const variable* var, T&& val)
{
value& v (assign (var) = forward<T> (val));
return v.as<T> ();
}
// Assign an untyped non-overridable variable with project visibility.
//
value&
assign (string name)
{
return assign (var_pool ().insert (move (name)));
}
// As above, but assign a typed variable (note: variable type must be
// specified explicitly).
//
template <typename V>
value&
assign (string name)
{
return vars.assign (var_pool ().insert<V> (move (name)));
}
template <typename V, typename T>
V&
assign (string name, T&& val)
{
value& v (assign<V> (move (name)) = forward<T> (val));
return v.as<V> ();
}
// Return a value suitable for appending. If the variable does not exist
// in this scope's map, then outer scopes are searched for the same
// variable. If found then a new variable with the found value is added to
// this scope and returned. Otherwise this function proceeds as assign().
//
value&
append (const variable&);
value&
append (string name)
{
return append (var_pool ().insert (move (name)));
}
template <typename V>
value&
append (string name)
{
return append (var_pool ().insert<V> (move (name)));
}
// Target type/pattern-specific variables.
//
variable_type_map target_vars;
// Target types.
//
// Note that target types are project-wide (even if the module that
// registers them is loaded in a base scope). The thinking here is that
// having target types only visible in certain scopes of a project just
// complicates and confuses things (e.g., you cannot refer to a target
// whose buildfile you just included). On the other hand, it feels highly
// unlikely that a target type will somehow need to be different for
// different parts of the project (unlike, say, a rule).
//
// The target types are also project-local. This means one has to use
// import to refer to targets across projects, even in own subprojects
// (because we stop searching at project boundaries).
//
// See also context::global_target_types.
//
public:
const target_type&
insert_target_type (const target_type& tt)
{
return root_extra->target_types.insert (tt).first;
}
template <typename T>
const target_type&
insert_target_type ()
{
return root_extra->target_types.insert<T> ();
}
void
insert_target_type_file (const string& n, const target_type& tt)
{
root_extra->target_types.insert_file (n, tt);
}
const target_type*
find_target_type (const string&) const;
// Given a target name, figure out its type, taking into account
// extensions, special names (e.g., '.' and '..'), or anything else that
// might be relevant. Process the name (in place) by extracting (and
// returning) extension, adjusting dir/leaf, etc., (note that the dir is
// not necessarily normalized). If the target type is already resolved,
// then it can be passed as the last argument. Return NULL if not found.
//
pair<const target_type*, optional<string>>
find_target_type (name&,
const location&,
const target_type* = nullptr) const;
// As above but process the potentially out-qualified target name further
// by completing (relative to this scope) and normalizing the directories
// and also issuing appropriate diagnostics if the target type is unknown.
// If the first argument has the pair flag true, then the second should be
// the out directory.
//
pair<const target_type&, optional<string>>
find_target_type (name&, name&, const location&) const;
// As above, but return the result as a target key (with its members
// shallow-pointing to processed parts in the two names).
//
target_key
find_target_key (name&, name&, const location&) const;
// As above, but the names are passed as a vector. Issue appropriate
// diagnostics if the wrong number of names is passed.
//
target_key
find_target_key (names&, const location&) const;
// Similar to the find_target_type() but does not complete relative
// directories.
//
pair<const target_type&, optional<string>>
find_prerequisite_type (name&, name&, const location&) const;
// As above, but return a prerequisite key.
//
prerequisite_key
find_prerequisite_key (name&, name&, const location&) const;
prerequisite_key
find_prerequisite_key (names&, const location&) const;
// Dynamically derive a new target type from an existing one. Return the
// reference to the target type and an indicator of whether it was
// actually created.
//
// Note: the flags are OR'ed to the base's flags.
//
pair<reference_wrapper<const target_type>, bool>
derive_target_type (const string& name,
const target_type& base,
target_type::flag flags = target_type::flag::none);
template <typename T>
pair<reference_wrapper<const target_type>, bool>
derive_target_type (const string& name)
{
return derive_target_type (name, T::static_type);
}
// Derive from an "exemplar" type overriding the factory.
//
const target_type&
derive_target_type (const target_type&);
// Rules.
//
public:
rule_map rules;
vector<unique_ptr<adhoc_rule_pattern>> adhoc_rules;
template <typename T>
void
insert_rule (action_id a, string name, const rule& r)
{
rules.insert<T> (a, move (name), r);
}
// 0 meta-operation id is treated as an (emulated) wildcard.
//
// Emulated means that we just iterate over all the meta-operations known
// to this project (and they should all be known at this point) and
// register the rule for each of them.
//
template <typename T>
void
insert_rule (meta_operation_id, operation_id, string name, const rule&);
// Operation callbacks.
//
// An entity (module, core) can register a function that will be called
// when an action is executed on the dir{} target that corresponds to this
// scope. The pre callback is called just before the recipe and the post
// -- immediately after. The callbacks are only called if the recipe
// (including noop recipe) is executed for the corresponding target. The
// callbacks should only be registered during the load phase.
//
// It only makes sense for callbacks to return target_state changed or
// unchanged and to throw failed in case of an error. These pre/post
// states will be merged with the recipe state and become the target
// state. See execute_recipe() for details.
//
public:
struct operation_callback
{
using callback = target_state (action, const scope&, const dir&);
function<callback> pre;
function<callback> post;
};
using operation_callback_map = multimap<action_id, operation_callback>;
operation_callback_map operation_callbacks;
// Extra root scope-only data.
//
public:
struct root_extra_type
{
// This project's name (var_project value). Absent means it is not yet
// determined. NULL means simple project. Empty means unnamed project.
//
// Note that it is set to point to a temporary value before loading
// bootstrap.build and to a permanent one (from the variable) after.
//
optional<const project_name*> project;
// This project's amalgamation (var_amalgamation value). Absent means it
// is not yet determined. NULL means amalgamation is disabled.
//
optional<const dir_path*> amalgamation;
// This project's subprojects (var_subprojects value). Absent means it
// is not yet determined (happens at the end of bootstrap_src()). NULL
// means there are no subprojects.
//
optional<build2::subprojects*> subprojects;
bool altn; // True if using alternative build file/directory naming.
bool loaded; // True if already loaded (load_root()).
// Build file/directory naming scheme used by this project.
//
const string& build_ext; // build or build2 (no dot)
const dir_path& build_dir; // build/ or build2/
const path& buildfile_file; // buildfile or build2file
const path& buildignore_file; // buildignore or build2ignore
const dir_path& root_dir; // build[2]/root/
const dir_path& bootstrap_dir; // build[2]/bootstrap/
const dir_path& build_build_dir; // build[2]/build/
const path& bootstrap_file; // build[2]/bootstrap.build[2]
const path& root_file; // build[2]/root.build[2]
const path& export_file; // build[2]/export.build[2]
const path& src_root_file; // build[2]/bootstrap/src-root.build[2]
const path& out_root_file; // build[2]/bootstrap/src-root.build[2]
// Project-private variable pool.
//
// Note: see scope::var_pool_ and use scope::var_pool().
//
variable_pool var_pool;
// Meta/operations supported by this project.
//
build2::meta_operations meta_operations;
build2::operations operations;
// Modules imported/loaded by this project.
//
module_import_map imported_modules;
module_state_map loaded_modules;
// Buildfiles already loaded for this project.
//
// We don't expect too many of them per project so let's use vector
// with linear search.
//
paths buildfiles;
bool
insert_buildfile (const path& f)
{
bool r (find (buildfiles.begin (),
buildfiles.end (),
f) == buildfiles.end ());
if (r)
buildfiles.push_back (f);
return r;
}
// Variable override cache.
//
mutable variable_override_cache override_cache;
// Target types.
//
target_type_map target_types;
// Environment variable overrides.
//
// These overrides should be applied to the environment when running
// tools (e.g., compilers) or querying environment variables from the
// buildfiles and by the build system itself. Populated by the config
// module and is not available during bootstrap (more precisely, not
// available until before_first modules have been initialized). The list
// is either empty of NULL-terminated.
//
// See also auto_project_env below.
//
vector<const char*> environment;
// A checksum of the above environment variables (empty if there are
// none). This can be used to take into account project environment
// when, for example, caching environment-sensitive information.
//
string environment_checksum;
root_extra_type (scope&, bool altn); // file.cxx
};
unique_ptr<root_extra_type> root_extra;
// The last argument is the operation variable (see var_include) or NULL
// if not used.
//
void
insert_operation (operation_id id,
const operation_info& in,
const variable* ovar)
{
// The operation variable should have prerequisite or target visibility.
//
assert (ovar == nullptr ||
(ovar->visibility == variable_visibility::prereq ||
ovar->visibility == variable_visibility::target));
root_extra->operations.insert (id, project_operation_info {&in, ovar});
}
void
insert_meta_operation (meta_operation_id id, const meta_operation_info& in)
{
root_extra->meta_operations.insert (id, &in);
}
bool
find_module (const string& name) const
{
return root_extra->loaded_modules.find_module<module> (name) != nullptr;
}
template <typename T>
T*
find_module (const string& name)
{
return root_extra->loaded_modules.find_module<T> (name);
}
template <typename T>
const T*
find_module (const string& name) const
{
return root_extra->loaded_modules.find_module<T> (name);
}
public:
// RW access.
//
scope&
rw () const
{
assert (ctx.phase == run_phase::load);
return const_cast<scope&> (*this);
}
// Return the project-private variable pool (which is chained to the
// public pool) unless pub is true, in which case return the public pool.
//
// You would normally go for the public pool directly as an optimization
// (for example, in the module's init()) if you know all your variables
// are qualified and thus public.
//
variable_pool&
var_pool (bool pub = false)
{
return (pub ? ctx.var_pool :
var_pool_ != nullptr ? *var_pool_ :
root_ != nullptr ? *root_->var_pool_ :
ctx.var_pool).rw (*this);
}
const variable_pool&
var_pool (bool pub = false) const
{
return (pub ? ctx.var_pool :
var_pool_ != nullptr ? *var_pool_ :
root_ != nullptr ? *root_->var_pool_ :
ctx.var_pool);
}
private:
friend class parser;
friend class scope_map;
friend class temp_scope;
// These from <libbuild2/file.hxx> set strong_.
//
friend LIBBUILD2_SYMEXPORT void create_bootstrap_outer (scope&, bool);
friend LIBBUILD2_SYMEXPORT scope& create_bootstrap_inner (scope&,
const dir_path&);
scope (context&, bool shared);
~scope ();
// Return true if this root scope can be amalgamated.
//
bool
amalgamatable () const;
// Note that these values represent "physical" scoping relationships not
// taking into account the project's var_amalgamation value.
//
scope* parent_;
scope* root_;
scope* strong_ = nullptr; // Only set on root scopes.
// NULL means no strong amalgamtion.
variable_pool* var_pool_ = nullptr; // For temp_scope override.
};
inline bool
operator== (const scope& x, const scope& y) { return &x == &y; }
inline bool
operator!= (const scope& x, const scope& y) { return !(x == y); }
inline ostream&
operator<< (ostream& os, const scope& s)
{
// Always absolute.
//
return to_stream (os, s.out_path (), true /* representation */);
}
// Automatic project environment setup/cleanup.
//
struct auto_project_env: auto_thread_env
{
auto_project_env () = default;
explicit
auto_project_env (nullptr_t p) // Clear current environment.
: auto_thread_env (p) {}
explicit
auto_project_env (const scope& rs)
: auto_thread_env (rs.root_extra->environment.empty ()
? nullptr
: rs.root_extra->environment.data ()) {}
};
// Return the src/out directory corresponding to the given out/src. The
// passed directory should be a sub-directory of out/src_root.
//
dir_path
src_out (const dir_path& out, const scope& root);
dir_path
src_out (const dir_path& out,
const dir_path& out_root, const dir_path& src_root);
dir_path
out_src (const dir_path& src, const scope& root);
dir_path
out_src (const dir_path& src,
const dir_path& out_root, const dir_path& src_root);
// Return the project name or empty if unnamed.
//
// Note that this function and named_project() below expect the root scope
// to either be already bootstrapped or being src-bootstrapped (see
// bootstrap_src()).
//
const project_name&
project (const scope& root);
// Return the name of the first innermost named project in the strong
// amalgamation chain or empty if all are unnamed.
//
const project_name&
named_project (const scope& root);
// Temporary scope. The idea is to be able to create a temporary scope in
// order not to change the variables in the current scope. Such a scope is
// not entered in to the scope map and its parent is the global scope. As a
// result it can only be used as a temporary set of variables. In
// particular, defining targets directly in such a scope will surely end up
// badly.
//
class temp_scope: public scope
{
public:
temp_scope (scope& gs)
: scope (gs.ctx, false /* shared */),
var_pool_ (nullptr /* shared */, &gs.ctx.var_pool.rw (gs), nullptr)
{
// Note that making this scope its own root is a bad idea.
//
root_ = nullptr;
parent_ = &gs;
out_path_ = gs.out_path_;
scope::var_pool_ = &var_pool_;
}
private:
variable_pool var_pool_;
};
// Scope map. Protected by the phase mutex.
//
// While it contains both out and src paths, the latter is not available
// during bootstrap (see setup_root() and setup_base() for details).
//
// Note also that the same src path can be naturally associated with
// multiple out paths/scopes (and one of them may be the same as src).
//
class scope_map
{
public:
// The first element, if not NULL, is for the "owning" out path. The rest
// of the elements are for the src path shallow references.
//
struct scopes: small_vector<scope*, 3>
{
scopes () = default;
~scopes () {if (!empty ()) delete front ();}
scopes (scopes&&) = default; // For GCC 4.9
scopes (const scopes&) = delete;
scopes& operator= (scopes&&) = delete;
scopes& operator= (const scopes&) = delete;
};
using map_type = dir_path_map<scopes>;
using iterator = map_type::iterator;
using const_iterator = map_type::const_iterator;
// Insert a scope given its out path.
//
// Note that we assume the first insertion into the map is always the
// global scope with empty key.
//
LIBBUILD2_SYMEXPORT iterator
insert_out (const dir_path& our_path, bool root = false);
// Insert a shallow reference to the scope for its src path.
//
LIBBUILD2_SYMEXPORT iterator
insert_src (scope&, const dir_path& src_path);
// Find the most qualified scope that encompasses this out path.
//
const scope&
find_out (const dir_path& d) const
{
return const_cast<scope_map*> (this)->find_out (d);
}
// Find all the scopes that encompass this path (out or src).
//
// Note that the returned range will never be empty (there is always the
// global scope).
//
// If the path is in src, then we may end up with multiple scopes. For
// example, if two configurations of the same project are being built in a
// single invocation. How can we pick the scope that is "ours", for some
// definition of "ours"?
//
// The current thinking is that a project can be "associated" with other
// projects: its sub-projects and imported projects (it doesn't feel like
// its super-projects should be in this set, but maybe). And "ours" could
// mean belonging to one of the associated projects. This feels correct
// since a project shouldn't really be reaching into unrelated projects.
// And a project can only import one instance of any given project.
//
// We could implement this by keeping track (in scope::root_extra) of all
// the imported projects. The potential problem is performance: we would
// need to traverse the imported projects set recursively (potentially
// re-traversing the same projects multiple times).
//
// An alternative idea is to tag associated scopes with some marker so
// that all the scopes that "know" about each other have the same tag,
// essentially partitioning the scope set into connected subsets. One
// issue here (other than the complexity of implementing something like
// this) is that there could potentially be multiple source scopes with
// the same tag (e.g., two projects that don't know anything about each
// other could each import a different configuration of some common
// project and in turn be both imported by yet another project thus all
// acquiring the same tag). BTW, this could also be related to that
// "island append" restriction we have on loading additional buildfile.
//
LIBBUILD2_SYMEXPORT pair<scopes::const_iterator, scopes::const_iterator>
find (const dir_path&) const;
const_iterator begin () const {return map_.begin ();}
const_iterator end () const {return map_.end ();}
const_iterator find_exact (const dir_path& d) const {return map_.find (d);}
// RW access.
//
public:
scope_map&
rw () const
{
assert (ctx.phase == run_phase::load);
return const_cast<scope_map&> (*this);
}
scope_map&
rw (scope&) const {return const_cast<scope_map&> (*this);}
private:
friend class context;
explicit
scope_map (context& c): ctx (c) {}
LIBBUILD2_SYMEXPORT scope&
find_out (const dir_path&);
private:
context& ctx;
map_type map_;
};
}
#include <libbuild2/scope.ixx>
#endif // LIBBUILD2_SCOPE_HXX
|