aboutsummaryrefslogtreecommitdiff
path: root/butl/process.cxx
blob: 37e9f72b63abecc6d58b936f7aa06c2dbe8e7453 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
// file      : butl/process.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2016 Code Synthesis Ltd
// license   : MIT; see accompanying LICENSE file

#include <butl/process>

#ifndef _WIN32
#  include <unistd.h>    // execvp, fork, dup2, pipe, chdir, *_FILENO, getpid
#  include <sys/wait.h>  // waitpid
#  include <sys/types.h> // _stat
#  include <sys/stat.h>  // _stat(), S_IS*
#else
#  include <butl/win32-utility>

#  include <io.h>        // _open_osfhandle(), _get_osfhandle(), _close()
#  include <fcntl.h>     // _O_TEXT
#  include <stdlib.h>    // _MAX_PATH, getenv()
#  include <sys/types.h> // stat
#  include <sys/stat.h>  // stat(), S_IS*

#  ifdef _MSC_VER // Unlikely to be fixed in newer versions.
#    define S_ISREG(m) (((m) & S_IFMT) == S_IFREG)

#    define STDIN_FILENO  0
#    define STDOUT_FILENO 1
#    define STDERR_FILENO 2
#  endif // _MSC_VER

#  include <memory>    // unique_ptr
#  include <cstdlib>   // __argv[]

#  include <butl/win32-utility>
#endif

#include <cassert>
#include <cstddef> // size_t
#include <cstring> // strlen(), strchr()

#include <butl/utility>  // casecmp()
#include <butl/fdstream> // fdnull(), fdclose()

using namespace std;

#ifdef _WIN32
using namespace butl::win32;
#endif

namespace butl
{
  class auto_fd
  {
  public:
    explicit
    auto_fd (int fd = -1) noexcept: fd_ (fd) {}

    auto_fd (const auto_fd&) = delete;
    auto_fd& operator= (const auto_fd&) = delete;

    ~auto_fd () noexcept {reset ();}

    int
    get () const noexcept {return fd_;}

    int
    release () noexcept
    {
      int r (fd_);
      fd_ = -1;
      return r;
    }

    void
    reset (int fd = -1) noexcept
    {
      if (fd_ != -1)
      {
        bool r (fdclose (fd_));

        // The valid file descriptor that has no IO operations being
        // performed on it should close successfully, unless something is
        // severely damaged.
        //
        assert (r);
      }

      fd_ = fd;
    }

  private:
    int fd_;
  };

  static process_path
  path_search (const char*, const dir_path&);

  process_path process::
  path_search (const char* f, bool init, const dir_path& fb)
  {
    process_path r (butl::path_search (f, fb));

    path& rp (r.recall);
    r.initial = init
      ? f
      : (rp.empty () ? (rp = path (f)) : rp).string ().c_str ();

    return r;
  }

#ifndef _WIN32

  static process_path
  path_search (const char* f, const dir_path& fb)
  {
    // Note that there is a similar version for Win32.

    typedef path::traits traits;

    size_t fn (strlen (f));

    process_path r (nullptr, path (), path ());
    path& rp (r.recall);
    path& ep (r.effect);

    auto search = [&ep, f, fn] (const char* d, size_t dn) -> bool
    {
      string s (move (ep).string ()); // Reuse buffer.

      if (dn != 0)
      {
        s.assign (d, dn);

        if (!traits::is_separator (s.back ()))
          s += traits::directory_separator;
      }

      s.append (f, fn);
      ep = path (move (s)); // Move back into result.

      // Check that the file exists and has at least one executable bit set.
      // This way we get a bit closer to the "continue search on EACCES"
      // semantics (see below).
      //
      struct stat si;
      return (stat (ep.string ().c_str (), &si) == 0 &&
              S_ISREG (si.st_mode) &&
              (si.st_mode & (S_IEXEC | S_IXGRP | S_IXOTH)) != 0);
    };

    // If there is a directory component in the file, then search does not
    // apply.
    //
    if (traits::find_separator (f, fn) != nullptr)
      return r;

    // The search order is documented in exec(3). Some of the differences
    // compared to exec*p() functions:
    //
    // 1. If there no PATH, we don't default to current directory/_CS_PATH.
    // 2. We do not continue searching on EACCES from execve().
    // 3. We do not execute via default shell on ENOEXEC from execve().
    //
    for (const char* b (getenv ("PATH")), *e;
         b != nullptr;
         b = (e != nullptr ? e + 1 : e))
    {
      e = strchr (b, traits::path_separator);

      // Empty path (i.e., a double colon or a colon at the beginning or end
      // of PATH) means search in the current dirrectory.
      //
      if (search (b, e != nullptr ? e - b : strlen (b)))
        return r;
    }

    // If we were given a fallback, try that.
    //
    if (!fb.empty ())
    {
      if (search (fb.string ().c_str (), fb.string ().size ()))
      {
        // In this case we have to set the recall path. And we know from
        // search() implementation that it will be the same as effective.
        // Which means we can just move effective to recall.
        //
        rp.swap (ep);

        return r;
      }
    }

    // Did not find anything.
    //
    throw process_error (ENOENT, false);
  }

  process::
  process (const char* cwd,
           const process_path& pp, const char* args[],
           int in, int out, int err)
  {
    using pipe = auto_fd[2];

    pipe out_fd;
    pipe in_ofd;
    pipe in_efd;

    auto fail = [](bool child) {throw process_error (errno, child);};

    auto create_pipe = [&fail](pipe& p)
    {
      int pd[2];
      if (::pipe (pd) == -1)
        fail (false);

      p[0].reset (pd[0]);
      p[1].reset (pd[1]);
    };

    auto create_null = [&fail](auto_fd& n)
    {
      int fd (fdnull ());
      if (fd == -1)
        fail (false);

      n.reset (fd);
    };

    // If we are asked to open null (-2) then open "half-pipe".
    //
    if (in == -1)
      create_pipe (out_fd);
    else if (in == -2)
      create_null (out_fd[0]);

    if (out == -1)
      create_pipe (in_ofd);
    else if (out == -2)
      create_null (in_ofd[1]);

    if (err == -1)
      create_pipe (in_efd);
    else if (err == -2)
      create_null (in_efd[1]);

    handle = fork ();

    if (handle == -1)
      fail (false);

    if (handle == 0)
    {
      // Child.
      //
      // Duplicate the user-supplied (fd > -1) or the created pipe descriptor
      // to the standard stream descriptor (read end for STDIN_FILENO, write
      // end otherwise). Close the the pipe afterwards.
      //
      auto duplicate = [&fail](int sd, int fd, pipe& pd)
      {
        if (fd == -1 || fd == -2)
          fd = pd[sd == STDIN_FILENO ? 0 : 1].get ();

        assert (fd > -1);
        if (dup2 (fd, sd) == -1)
          fail (true);

        pd[0].reset (); // Close.
        pd[1].reset (); // Close.
      };

      if (in != STDIN_FILENO)
        duplicate (STDIN_FILENO, in, out_fd);

      if (out != STDOUT_FILENO)
        duplicate (STDOUT_FILENO, out, in_ofd);

      if (err != STDERR_FILENO)
        duplicate (STDERR_FILENO, err, in_efd);

      // Change current working directory if requested.
      //
      if (cwd != nullptr && *cwd != '\0' && chdir (cwd) != 0)
        fail (true);

      if (execv (pp.effect_string (), const_cast<char**> (&args[0])) == -1)
        fail (true);
    }

    assert (handle != 0); // Shouldn't get here unless in the parent process.

    this->out_fd = out_fd[1].release ();
    this->in_ofd = in_ofd[0].release ();
    this->in_efd = in_efd[0].release ();
  }

  process::
  process (const char* cwd,
           const process_path& pp, const char* args[],
           process& in, int out, int err)
      : process (cwd, pp, args, in.in_ofd, out, err)
  {
    assert (in.in_ofd != -1); // Should be a pipe.
    close (in.in_ofd); // Close it on our side.
  }

  bool process::
  wait (bool ie)
  {
    if (handle != 0)
    {
      int r (waitpid (handle, &status, 0));
      handle = 0; // We have tried.

      if (r == -1)
      {
        if (!ie)
          throw process_error (errno, false);
        else
          // Fold into status, so this and subsequent wait() calls return
          // false. There is no portable way to update the status bits
          // representing a process exit code specifically. So we set all bits
          // to 1 and recon on getting non-zero exit status wherever the exact
          // bits are.
          //
          status = ~0;
      }
    }

    return WIFEXITED (status) && WEXITSTATUS (status) == 0;
  }

  bool process::
  try_wait (bool& s)
  {
    if (handle != 0)
    {
      int r (waitpid (handle, &status, WNOHANG));

      if (r == 0) // Not exited yet.
        return false;

      handle = 0; // We have tried.

      if (r == -1)
        throw process_error (errno, false);
    }

    s =  WIFEXITED (status) && WEXITSTATUS (status) == 0;
    return true;
  }

  process::id_type process::
  current_id ()
  {
    return getpid ();
  }

#else // _WIN32

  static process_path
  path_search (const char* f, const dir_path& fb)
  {
    // Note that there is a similar version for Win32.

    typedef path::traits traits;

    size_t fn (strlen (f));

    // Unless there is already the .exe extension, then we will need to add
    // it. Note that running .bat files requires starting cmd.exe and passing
    // the batch file as an argument (see CreateProcess() for deails). So
    // if/when we decide to support those, it will have to be handled
    // differently.
    //
    bool ext;
    {
      const char* e (traits::find_extension (f, fn));
      ext = (e == nullptr || casecmp (e, ".exe") != 0);
    }

    process_path r (nullptr, path (), path ());
    path& rp (r.recall);
    path& ep (r.effect);

    auto search = [&ep, f, fn, ext] (const char* d, size_t dn) -> bool
    {
      string s (move (ep).string ()); // Reuse buffer.

      if (dn != 0)
      {
        s.assign (d, dn);

        if (!traits::is_separator (s.back ()))
          s += traits::directory_separator;
      }

      s.append (f, fn);
      ep = path (move (s)); // Move back into result.

      // Add the .exe extension if necessary.
      //
      if (ext)
        ep += ".exe";

      // Only check that the file exists since the executable mode is set
      // according to the file extension.
      //
      struct _stat si;
      return _stat (ep.string ().c_str (), &si) == 0 && S_ISREG (si.st_mode);
    };

    // If there is a directory component in the file, then search does not
    // apply. But we may still need to append the extension.
    //
    if (traits::find_separator (f, fn) != nullptr)
    {
      if (ext)
      {
        ep = path (f, fn);
        ep += ".exe";
      }

      return r;
    }

    // The search order is documented in CreateProcess(). First we look in the
    // directory of the parent executable.
    //
    {
      char d[_MAX_PATH + 1];
      DWORD n (GetModuleFileName (NULL, d, _MAX_PATH + 1));

      if (n == 0 || n == _MAX_PATH + 1) // Failed or truncated.
        throw process_error (last_error_msg ());

      const char* p (traits::rfind_separator (d, n));
      assert (p != nullptr);

      if (search (d, p - d + 1)) // Include trailing slash.
      {
        // In this case we have to set the recall path.
        //
        // Note that the directory we have extracted is always absolute but
        // the parent's recall path (argv[0]) might be relative. It seems,
        // ideally, we would want to use parent's argv[0] dir (if any) to form
        // the recall path. In particular, if the parent has no directory,
        // then it means it was found via the standard search (e.g., PATH) and
        // then so should the child.
        //
        // How do we get the parent's argv[0]? Luckily, here is __argv on
        // Windows.
        //
        const char* d (__argv[0]);
        size_t n (strlen (d));
        if (const char* p = traits::rfind_separator (d, n))
        {
          string s (d, p - d + 1); // Include trailing slash.
          s.append (f, fn);
          rp = path (move (s));

          // If recall is the same as effective, then set effective to empty.
          //
          if (rp == ep)
            ep.clear ();
        }

        return r;
      }
    }

    // Next look in the current working directory. Crazy, I know.
    //
    // The recall path is the same as initial, though it might not be a bad
    // idea to prepend .\ for clarity.
    //
    if (search ("", 0))
      return r;

    // Now search in PATH. Recall is unchanged.
    //
    for (const char* b (getenv ("PATH")), *e;
         b != nullptr;
         b = (e != nullptr ? e + 1 : e))
    {
      e = strchr (b, traits::path_separator);

      // Empty path (i.e., a double colon or a colon at the beginning or end
      // of PATH) means search in the current dirrectory.
      //
      if (search (b, e != nullptr ? e - b : strlen (b)))
        return r;
    }

    // Finally, if we were given a fallback, try that. This case is similar to
    // searching in the parent executable's directory.
    //
    if (!fb.empty ())
    {
      // I would have been nice to preserve trailing slash (by using
      // representation() instead of string()), but that would involve a
      // copy. Oh, well, can't always win.
      //
      if (search (fb.string ().c_str (), fb.string ().size ()))
      {
        // In this case we have to set the recall path. At least here we got
        // to keep the original slash.
        //
        rp = fb;
        rp /= f;

        // If recall is the same as effective, then set effective to empty.
        //
        if (rp == ep)
          ep.clear ();

        return r;
      }
    }

    // Did not find anything.
    //
    throw process_error (ENOENT);
  }

  class auto_handle
  {
  public:
    explicit
    auto_handle (HANDLE h = INVALID_HANDLE_VALUE) noexcept: handle_ (h) {}

    auto_handle (const auto_handle&) = delete;
    auto_handle& operator= (const auto_handle&) = delete;

    ~auto_handle () noexcept {reset ();}

    HANDLE
    get () const noexcept {return handle_;}

    HANDLE
    release () noexcept
    {
      HANDLE r (handle_);
      handle_ = INVALID_HANDLE_VALUE;
      return r;
    }

    void
    reset (HANDLE h = INVALID_HANDLE_VALUE) noexcept
    {
      if (handle_ != INVALID_HANDLE_VALUE)
      {
        bool r (CloseHandle (handle_));

        // The valid process, thread or file handle that has no IO operations
        // being performed on it should close successfully, unless something
        // is severely damaged.
        //
        assert (r);
      }

      handle_ = h;
    }

  private:
    HANDLE handle_;
  };

  process::
  process (const char* cwd,
           const process_path& pp, const char* args[],
           int in, int out, int err)
  {
    using pipe = auto_handle[2];

    pipe out_h;
    pipe in_oh;
    pipe in_eh;

    SECURITY_ATTRIBUTES sa;
    sa.nLength = sizeof (SECURITY_ATTRIBUTES);
    sa.bInheritHandle = true;
    sa.lpSecurityDescriptor = 0;

    auto fail = [](const char* m = nullptr)
    {
      throw process_error (m == nullptr ? last_error_msg () : m);
    };

    // Create a pipe and clear the inherit flag on the parent side.
    //
    auto create_pipe = [&sa, &fail](pipe& p, int parent)
    {
      HANDLE ph[2];
      if (!CreatePipe (&ph[0], &ph[1], &sa, 0))
        fail ();

      p[0].reset (ph[0]);
      p[1].reset (ph[1]);

      if (!SetHandleInformation (p[parent].get (), HANDLE_FLAG_INHERIT, 0))
        fail ();
    };

    // Resolve file descriptor to HANDLE and make sure it is inherited. Note
    // that the handle is closed either when CloseHandle() is called for it or
    // when _close() is called for the associated file descriptor. Make sure
    // that either the original file descriptor or the resulted HANDLE is
    // closed but not both of them.
    //
    auto get_osfhandle = [&fail](int fd) -> HANDLE
    {
      HANDLE h (reinterpret_cast<HANDLE> (_get_osfhandle (fd)));
      if (h == INVALID_HANDLE_VALUE)
        fail ("unable to obtain file handle");

      // SetHandleInformation() fails for standard handles. We assume they are
      // inherited by default.
      //
      if (fd != STDIN_FILENO && fd != STDOUT_FILENO && fd != STDERR_FILENO)
      {
        if (!SetHandleInformation (
              h, HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT))
          fail ();
      }

      return h;
    };

    auto create_null = [&get_osfhandle, &fail](auto_handle& n)
    {
      // Note that we are using a faster, temporary file-based emulation of
      // NUL since we have no way of making sure the child buffers things
      // properly (and by default they seem no to).
      //
      auto_fd fd (fdnull (true));
      if (fd.get () == -1)
        fail ();

      n.reset (get_osfhandle (fd.get ()));
      fd.release (); // Not to close the handle twice.
    };

    if (in == -1)
      create_pipe (out_h, 1);
    else if (in == -2)
      create_null (out_h[0]);

    if (out == -1)
      create_pipe (in_oh, 0);
    else if (out == -2)
      create_null (in_oh[1]);

    if (err == -1)
      create_pipe (in_eh, 0);
    else if (err == -2)
      create_null (in_eh[1]);

    // Create the process.
    //

    // Serialize the arguments to string.
    //
    string cmd_line;

    for (const char* const* p (args); *p != 0; ++p)
    {
      if (p != args)
        cmd_line += ' ';

      // On Windows we need to protect values with spaces using quotes. Since
      // there could be actual quotes in the value, we need to escape them.
      //
      string a (*p);
      bool quote (a.find (' ') != string::npos);

      if (quote)
        cmd_line += '"';

      for (size_t i (0); i < a.size (); ++i)
      {
        if (a[i] == '"')
          cmd_line += "\\\"";
        else
          cmd_line += a[i];
      }

      if (quote)
        cmd_line += '"';
    }

    // Prepare other process information.
    //
    STARTUPINFO si;
    PROCESS_INFORMATION pi;

    memset (&si, 0, sizeof (STARTUPINFO));
    memset (&pi, 0, sizeof (PROCESS_INFORMATION));

    si.cb = sizeof (STARTUPINFO);
    si.dwFlags |= STARTF_USESTDHANDLES;

    si.hStdInput = in == -1 || in == -2
      ? out_h[0].get ()
      : in == STDIN_FILENO
        ? GetStdHandle (STD_INPUT_HANDLE)
        : get_osfhandle (in);

    si.hStdOutput = out == -1 || out == -2
      ? in_oh[1].get ()
      : out == STDOUT_FILENO
        ? GetStdHandle (STD_OUTPUT_HANDLE)
        : get_osfhandle (out);

    si.hStdError = err == -1 || err == -2
      ? in_eh[1].get ()
      : err == STDERR_FILENO
        ? GetStdHandle (STD_ERROR_HANDLE)
        : get_osfhandle (err);

    // Perform standard stream redirection if requested.
    //
    if (err == STDOUT_FILENO)
      si.hStdError = si.hStdOutput;
    else if (out == STDERR_FILENO)
      si.hStdOutput = si.hStdError;

    if (err == STDIN_FILENO ||
        out == STDIN_FILENO ||
        in == STDOUT_FILENO ||
        in == STDERR_FILENO)
      fail ("invalid file descriptor");

    if (!CreateProcess (
          pp.effect_string (),
          const_cast<char*> (cmd_line.c_str ()),
          0,    // Process security attributes.
          0,    // Primary thread security attributes.
          true, // Inherit handles.
          0,    // Creation flags.
          0,    // Use our environment.
          cwd != nullptr && *cwd != '\0' ? cwd : nullptr,
          &si,
          &pi))
      fail ();

    auto_handle (pi.hThread).reset (); // Close.
    auto_handle process (pi.hProcess);

    // Convert file handles to file descriptors. Note that the handle is
    // closed when _close() is called for the returned file descriptor.
    //
    auto open_osfhandle = [&fail](auto_handle& h) -> int
    {
      int fd (
        _open_osfhandle (reinterpret_cast<intptr_t> (h.get ()), _O_TEXT));

      if (fd == -1)
        fail ("unable to convert file handle to file descriptor");

      h.release ();
      return fd;
    };

    auto_fd out_fd (in == -1 ? open_osfhandle (out_h[1]) : -1);
    auto_fd in_ofd (out == -1 ? open_osfhandle (in_oh[0]) : -1);
    auto_fd in_efd (err == -1 ? open_osfhandle (in_eh[0]) : -1);

    this->out_fd = out_fd.release ();
    this->in_ofd = in_ofd.release ();
    this->in_efd = in_efd.release ();

    this->handle = process.release ();

    // 0 has a special meaning denoting a terminated process handle.
    //
    assert (this->handle != 0 && this->handle != INVALID_HANDLE_VALUE);
  }

  process::
  process (const char* cwd,
           const process_path& pp, const char* args[],
           process& in, int out, int err)
      : process (cwd, pp, args, in.in_ofd, out, err)
  {
    assert (in.in_ofd != -1); // Should be a pipe.
    _close (in.in_ofd); // Close it on our side.
  }

  bool process::
  wait (bool ie)
  {
    if (handle != 0)
    {
      DWORD s;
      DWORD e (NO_ERROR);
      if (WaitForSingleObject (handle, INFINITE) != WAIT_OBJECT_0 ||
          !GetExitCodeProcess (handle, &s))
        e = GetLastError ();

      auto_handle h (handle); // Auto-deleter.
      handle = 0; // We have tried.

      if (e == NO_ERROR)
        status = s;
      else
      {
        if (!ie)
          throw process_error (error_msg (e));
        else
          status = 1; // Fold into status.
      }
    }

    return status == 0;
  }

  bool process::
  try_wait (bool& s)
  {
    if (handle != 0)
    {
      DWORD r (WaitForSingleObject (handle, 0));
      if (r == WAIT_TIMEOUT)
        return false;

      DWORD s;
      DWORD e (NO_ERROR);
      if (r != WAIT_OBJECT_0 || !GetExitCodeProcess (handle, &s))
        e = GetLastError ();

      auto_handle h (handle);
      handle = 0; // We have tried.

      if (e != NO_ERROR)
        throw process_error (error_msg (e));

      status = s;
    }

    s = status == 0;
    return true;
  }

  process::id_type process::
  current_id ()
  {
    return GetCurrentProcessId ();
  }

#endif // _WIN32
}