summaryrefslogtreecommitdiff
path: root/libpq/win32/crypt.c
diff options
context:
space:
mode:
Diffstat (limited to 'libpq/win32/crypt.c')
-rw-r--r--libpq/win32/crypt.c1085
1 files changed, 0 insertions, 1085 deletions
diff --git a/libpq/win32/crypt.c b/libpq/win32/crypt.c
deleted file mode 100644
index 6a902ef..0000000
--- a/libpq/win32/crypt.c
+++ /dev/null
@@ -1,1085 +0,0 @@
-/* src/port/crypt.c */
-/* $NetBSD: crypt.c,v 1.18 2001/03/01 14:37:35 wiz Exp $ */
-
-/*
- * Copyright (c) 1989, 1993
- * The Regents of the University of California. All rights reserved.
- *
- * This code is derived from software contributed to Berkeley by
- * Tom Truscott.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * 3. Neither the name of the University nor the names of its contributors
- * may be used to endorse or promote products derived from this software
- * without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
-
-#if defined(LIBC_SCCS) && !defined(lint)
-#if 0
-static char sccsid[] = "@(#)crypt.c 8.1.1.1 (Berkeley) 8/18/93";
-#else
-__RCSID("$NetBSD: crypt.c,v 1.18 2001/03/01 14:37:35 wiz Exp $");
-#endif
-#endif /* not lint */
-
-#include "c.h"
-
-#include <limits.h>
-
-#ifndef WIN32
-#include <unistd.h>
-#endif
-
-static int des_setkey(const char *key);
-static int des_cipher(const char *in, char *out, long salt, int num_iter);
-
-/*
- * UNIX password, and DES, encryption.
- * By Tom Truscott, trt@rti.rti.org,
- * from algorithms by Robert W. Baldwin and James Gillogly.
- *
- * References:
- * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
- * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
- *
- * "Password Security: A Case History," R. Morris and Ken Thompson,
- * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
- *
- * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
- * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
- */
-
-/* ===== Configuration ==================== */
-
-/*
- * define "MUST_ALIGN" if your compiler cannot load/store
- * long integers at arbitrary (e.g. odd) memory locations.
- * (Either that or never pass unaligned addresses to des_cipher!)
- */
-/* #define MUST_ALIGN */
-
-#ifdef CHAR_BITS
-#if CHAR_BITS != 8
-#error C_block structure assumes 8 bit characters
-#endif
-#endif
-
-/*
- * define "B64" to be the declaration for a 64 bit integer.
- * XXX this feature is currently unused, see "endian" comment below.
- */
-/* #define B64 int64 */
-
-/*
- * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
- * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
- * little effect on crypt().
- */
-/* #define LARGEDATA */
-
-/* compile with "-DSTATIC=void" when profiling */
-#ifndef STATIC
-#define STATIC static void
-#endif
-
-/*
- * Define the "int32_t" type for integral type with a width of at least
- * 32 bits.
- */
-typedef int int32_t;
-
-/* ==================================== */
-
-#define _PASSWORD_EFMT1 '_' /* extended encryption format */
-
-/*
- * Cipher-block representation (Bob Baldwin):
- *
- * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
- * representation is to store one bit per byte in an array of bytes. Bit N of
- * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
- * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
- * first byte, 9..16 in the second, and so on. The DES spec apparently has
- * bit 1 in the MSB of the first byte, but that is particularly noxious so we
- * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
- * the MSB of the first byte. Specifically, the 64-bit input data and key are
- * converted to LSB format, and the output 64-bit block is converted back into
- * MSB format.
- *
- * DES operates internally on groups of 32 bits which are expanded to 48 bits
- * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
- * the computation, the expansion is applied only once, the expanded
- * representation is maintained during the encryption, and a compression
- * permutation is applied only at the end. To speed up the S-box lookups,
- * the 48 bits are maintained as eight 6 bit groups, one per byte, which
- * directly feed the eight S-boxes. Within each byte, the 6 bits are the
- * most significant ones. The low two bits of each byte are zero. (Thus,
- * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
- * first byte in the eight byte representation, bit 2 of the 48 bit value is
- * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
- * used, in which the output is the 64 bit result of an S-box lookup which
- * has been permuted by P and expanded by E, and is ready for use in the next
- * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
- * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
- * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
- * "salt" are also converted to this 8*(6+2) format. The SPE table size is
- * 8*64*8 = 4K bytes.
- *
- * To speed up bit-parallel operations (such as XOR), the 8 byte
- * representation is "union"ed with 32 bit values "i0" and "i1", and, on
- * machines which support it, a 64 bit value "b64". This data structure,
- * "C_block", has two problems. First, alignment restrictions must be
- * honored. Second, the byte-order (e.g. little-endian or big-endian) of
- * the architecture becomes visible.
- *
- * The byte-order problem is unfortunate, since on the one hand it is good
- * to have a machine-independent C_block representation (bits 1..8 in the
- * first byte, etc.), and on the other hand it is good for the LSB of the
- * first byte to be the LSB of i0. We cannot have both these things, so we
- * currently use the "little-endian" representation and avoid any multi-byte
- * operations that depend on byte order. This largely precludes use of the
- * 64-bit datatype since the relative order of i0 and i1 are unknown. It
- * also inhibits grouping the SPE table to look up 12 bits at a time. (The
- * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
- * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
- * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
- * requires a 128 kilobyte table, so perhaps this is not a big loss.
- *
- * Permutation representation (Jim Gillogly):
- *
- * A transformation is defined by its effect on each of the 8 bytes of the
- * 64-bit input. For each byte we give a 64-bit output that has the bits in
- * the input distributed appropriately. The transformation is then the OR
- * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
- * each transformation. Unless LARGEDATA is defined, however, a more compact
- * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
- * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
- * is slower but tolerable, particularly for password encryption in which
- * the SPE transformation is iterated many times. The small tables total 9K
- * bytes, the large tables total 72K bytes.
- *
- * The transformations used are:
- * IE3264: MSB->LSB conversion, initial permutation, and expansion.
- * This is done by collecting the 32 even-numbered bits and applying
- * a 32->64 bit transformation, and then collecting the 32 odd-numbered
- * bits and applying the same transformation. Since there are only
- * 32 input bits, the IE3264 transformation table is half the size of
- * the usual table.
- * CF6464: Compression, final permutation, and LSB->MSB conversion.
- * This is done by two trivial 48->32 bit compressions to obtain
- * a 64-bit block (the bit numbering is given in the "CIFP" table)
- * followed by a 64->64 bit "cleanup" transformation. (It would
- * be possible to group the bits in the 64-bit block so that 2
- * identical 32->32 bit transformations could be used instead,
- * saving a factor of 4 in space and possibly 2 in time, but
- * byte-ordering and other complications rear their ugly head.
- * Similar opportunities/problems arise in the key schedule
- * transforms.)
- * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
- * This admittedly baroque 64->64 bit transformation is used to
- * produce the first code (in 8*(6+2) format) of the key schedule.
- * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
- * It would be possible to define 15 more transformations, each
- * with a different rotation, to generate the entire key schedule.
- * To save space, however, we instead permute each code into the
- * next by using a transformation that "undoes" the PC2 permutation,
- * rotates the code, and then applies PC2. Unfortunately, PC2
- * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
- * invertible. We get around that problem by using a modified PC2
- * which retains the 8 otherwise-lost bits in the unused low-order
- * bits of each byte. The low-order bits are cleared when the
- * codes are stored into the key schedule.
- * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
- * This is faster than applying PC2ROT[0] twice,
- *
- * The Bell Labs "salt" (Bob Baldwin):
- *
- * The salting is a simple permutation applied to the 48-bit result of E.
- * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
- * i+24 of the result are swapped. The salt is thus a 24 bit number, with
- * 16777216 possible values. (The original salt was 12 bits and could not
- * swap bits 13..24 with 36..48.)
- *
- * It is possible, but ugly, to warp the SPE table to account for the salt
- * permutation. Fortunately, the conditional bit swapping requires only
- * about four machine instructions and can be done on-the-fly with about an
- * 8% performance penalty.
- */
-
-typedef union
-{
- unsigned char b[8];
- struct
- {
- int32_t i0;
- int32_t i1;
- } b32;
-#if defined(B64)
- B64 b64;
-#endif
-} C_block;
-
-/*
- * Convert twenty-four-bit long in host-order
- * to six bits (and 2 low-order zeroes) per char little-endian format.
- */
-#define TO_SIX_BIT(rslt, src) { \
- C_block cvt; \
- cvt.b[0] = src; src >>= 6; \
- cvt.b[1] = src; src >>= 6; \
- cvt.b[2] = src; src >>= 6; \
- cvt.b[3] = src; \
- rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
- }
-
-/*
- * These macros may someday permit efficient use of 64-bit integers.
- */
-#define ZERO(d,d0,d1) d0 = 0, d1 = 0
-#define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
-#define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
-#define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
-#define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
-#define DCL_BLOCK(d,d0,d1) int32_t d0, d1
-
-#if defined(LARGEDATA)
- /* Waste memory like crazy. Also, do permutations in line */
-#define LGCHUNKBITS 3
-#define CHUNKBITS (1<<LGCHUNKBITS)
-#define PERM6464(d,d0,d1,cpp,p) \
- LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
- OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
- OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
- OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
- OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
- OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
- OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
- OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
-#define PERM3264(d,d0,d1,cpp,p) \
- LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
- OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
- OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
- OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
-#else
- /* "small data" */
-#define LGCHUNKBITS 2
-#define CHUNKBITS (1<<LGCHUNKBITS)
-#define PERM6464(d,d0,d1,cpp,p) \
- { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
-#define PERM3264(d,d0,d1,cpp,p) \
- { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
-#endif /* LARGEDATA */
-
-STATIC init_des(void);
-STATIC init_perm(C_block[64 / CHUNKBITS][1 << CHUNKBITS], unsigned char[64], int, int);
-
-#ifndef LARGEDATA
-STATIC permute(unsigned char *, C_block *, C_block *, int);
-#endif
-#ifdef DEBUG
-STATIC prtab(char *, unsigned char *, int);
-#endif
-
-
-#ifndef LARGEDATA
-STATIC
-permute(cp, out, p, chars_in)
-unsigned char *cp;
-C_block *out;
-C_block *p;
-int chars_in;
-{
- DCL_BLOCK(D, D0, D1);
- C_block *tp;
- int t;
-
- ZERO(D, D0, D1);
- do
- {
- t = *cp++;
- tp = &p[t & 0xf];
- OR(D, D0, D1, *tp);
- p += (1 << CHUNKBITS);
- tp = &p[t >> 4];
- OR(D, D0, D1, *tp);
- p += (1 << CHUNKBITS);
- } while (--chars_in > 0);
- STORE(D, D0, D1, *out);
-}
-#endif /* LARGEDATA */
-
-
-/* ===== (mostly) Standard DES Tables ==================== */
-
-static const unsigned char IP[] = { /* initial permutation */
- 58, 50, 42, 34, 26, 18, 10, 2,
- 60, 52, 44, 36, 28, 20, 12, 4,
- 62, 54, 46, 38, 30, 22, 14, 6,
- 64, 56, 48, 40, 32, 24, 16, 8,
- 57, 49, 41, 33, 25, 17, 9, 1,
- 59, 51, 43, 35, 27, 19, 11, 3,
- 61, 53, 45, 37, 29, 21, 13, 5,
- 63, 55, 47, 39, 31, 23, 15, 7,
-};
-
-/* The final permutation is the inverse of IP - no table is necessary */
-
-static const unsigned char ExpandTr[] = { /* expansion operation */
- 32, 1, 2, 3, 4, 5,
- 4, 5, 6, 7, 8, 9,
- 8, 9, 10, 11, 12, 13,
- 12, 13, 14, 15, 16, 17,
- 16, 17, 18, 19, 20, 21,
- 20, 21, 22, 23, 24, 25,
- 24, 25, 26, 27, 28, 29,
- 28, 29, 30, 31, 32, 1,
-};
-
-static const unsigned char PC1[] = { /* permuted choice table 1 */
- 57, 49, 41, 33, 25, 17, 9,
- 1, 58, 50, 42, 34, 26, 18,
- 10, 2, 59, 51, 43, 35, 27,
- 19, 11, 3, 60, 52, 44, 36,
-
- 63, 55, 47, 39, 31, 23, 15,
- 7, 62, 54, 46, 38, 30, 22,
- 14, 6, 61, 53, 45, 37, 29,
- 21, 13, 5, 28, 20, 12, 4,
-};
-
-static const unsigned char Rotates[] = { /* PC1 rotation schedule */
- 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
-};
-
-/* note: each "row" of PC2 is left-padded with bits that make it invertible */
-static const unsigned char PC2[] = { /* permuted choice table 2 */
- 9, 18, 14, 17, 11, 24, 1, 5,
- 22, 25, 3, 28, 15, 6, 21, 10,
- 35, 38, 23, 19, 12, 4, 26, 8,
- 43, 54, 16, 7, 27, 20, 13, 2,
-
- 0, 0, 41, 52, 31, 37, 47, 55,
- 0, 0, 30, 40, 51, 45, 33, 48,
- 0, 0, 44, 49, 39, 56, 34, 53,
- 0, 0, 46, 42, 50, 36, 29, 32,
-};
-
-static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
- /* S[1] */
- {14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
- 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
- 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
- 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13},
- /* S[2] */
- {15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
- 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
- 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
- 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9},
- /* S[3] */
- {10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
- 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
- 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
- 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12},
- /* S[4] */
- {7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
- 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
- 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
- 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14},
- /* S[5] */
- {2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
- 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
- 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
- 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},
- /* S[6] */
- {12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
- 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
- 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
- 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13},
- /* S[7] */
- {4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
- 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
- 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
- 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12},
- /* S[8] */
- {13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
- 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
- 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
- 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}
-};
-
-static const unsigned char P32Tr[] = { /* 32-bit permutation function */
- 16, 7, 20, 21,
- 29, 12, 28, 17,
- 1, 15, 23, 26,
- 5, 18, 31, 10,
- 2, 8, 24, 14,
- 32, 27, 3, 9,
- 19, 13, 30, 6,
- 22, 11, 4, 25,
-};
-
-static const unsigned char CIFP[] = { /* compressed/interleaved permutation */
- 1, 2, 3, 4, 17, 18, 19, 20,
- 5, 6, 7, 8, 21, 22, 23, 24,
- 9, 10, 11, 12, 25, 26, 27, 28,
- 13, 14, 15, 16, 29, 30, 31, 32,
-
- 33, 34, 35, 36, 49, 50, 51, 52,
- 37, 38, 39, 40, 53, 54, 55, 56,
- 41, 42, 43, 44, 57, 58, 59, 60,
- 45, 46, 47, 48, 61, 62, 63, 64,
-};
-
-static const unsigned char itoa64[] = /* 0..63 => ascii-64 */
-"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
-
-
-/* ===== Tables that are initialized at run time ==================== */
-
-
-static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
-
-/* Initial key schedule permutation */
-static C_block PC1ROT[64 / CHUNKBITS][1 << CHUNKBITS];
-
-/* Subsequent key schedule rotation permutations */
-static C_block PC2ROT[2][64 / CHUNKBITS][1 << CHUNKBITS];
-
-/* Initial permutation/expansion table */
-static C_block IE3264[32 / CHUNKBITS][1 << CHUNKBITS];
-
-/* Table that combines the S, P, and E operations. */
-static int32_t SPE[2][8][64];
-
-/* compressed/interleaved => final permutation table */
-static C_block CF6464[64 / CHUNKBITS][1 << CHUNKBITS];
-
-
-/* ==================================== */
-
-
-static C_block constdatablock; /* encryption constant */
-static char cryptresult[1 + 4 + 4 + 11 + 1]; /* encrypted result */
-
-extern char *__md5crypt(const char *, const char *); /* XXX */
-extern char *__bcrypt(const char *, const char *); /* XXX */
-
-
-/*
- * Return a pointer to static data consisting of the "setting"
- * followed by an encryption produced by the "key" and "setting".
- */
-char *
-crypt(key, setting)
-const char *key;
-const char *setting;
-{
- char *encp;
- int32_t i;
- int t;
- int32_t salt;
- int num_iter,
- salt_size;
- C_block keyblock,
- rsltblock;
-
-#if 0
- /* Non-DES encryption schemes hook in here. */
- if (setting[0] == _PASSWORD_NONDES)
- {
- switch (setting[1])
- {
- case '2':
- return (__bcrypt(key, setting));
- case '1':
- default:
- return (__md5crypt(key, setting));
- }
- }
-#endif
-
- for (i = 0; i < 8; i++)
- {
- if ((t = 2 * (unsigned char) (*key)) != 0)
- key++;
- keyblock.b[i] = t;
- }
- if (des_setkey((char *) keyblock.b)) /* also initializes "a64toi" */
- return (NULL);
-
- encp = &cryptresult[0];
- switch (*setting)
- {
- case _PASSWORD_EFMT1:
-
- /*
- * Involve the rest of the password 8 characters at a time.
- */
- while (*key)
- {
- if (des_cipher((char *) (void *) &keyblock,
- (char *) (void *) &keyblock, 0L, 1))
- return (NULL);
- for (i = 0; i < 8; i++)
- {
- if ((t = 2 * (unsigned char) (*key)) != 0)
- key++;
- keyblock.b[i] ^= t;
- }
- if (des_setkey((char *) keyblock.b))
- return (NULL);
- }
-
- *encp++ = *setting++;
-
- /* get iteration count */
- num_iter = 0;
- for (i = 4; --i >= 0;)
- {
- if ((t = (unsigned char) setting[i]) == '\0')
- t = '.';
- encp[i] = t;
- num_iter = (num_iter << 6) | a64toi[t];
- }
- setting += 4;
- encp += 4;
- salt_size = 4;
- break;
- default:
- num_iter = 25;
- salt_size = 2;
- }
-
- salt = 0;
- for (i = salt_size; --i >= 0;)
- {
- if ((t = (unsigned char) setting[i]) == '\0')
- t = '.';
- encp[i] = t;
- salt = (salt << 6) | a64toi[t];
- }
- encp += salt_size;
- if (des_cipher((char *) (void *) &constdatablock,
- (char *) (void *) &rsltblock, salt, num_iter))
- return (NULL);
-
- /*
- * Encode the 64 cipher bits as 11 ascii characters.
- */
- i = ((int32_t) ((rsltblock.b[0] << 8) | rsltblock.b[1]) << 8) |
- rsltblock.b[2];
- encp[3] = itoa64[i & 0x3f];
- i >>= 6;
- encp[2] = itoa64[i & 0x3f];
- i >>= 6;
- encp[1] = itoa64[i & 0x3f];
- i >>= 6;
- encp[0] = itoa64[i];
- encp += 4;
- i = ((int32_t) ((rsltblock.b[3] << 8) | rsltblock.b[4]) << 8) |
- rsltblock.b[5];
- encp[3] = itoa64[i & 0x3f];
- i >>= 6;
- encp[2] = itoa64[i & 0x3f];
- i >>= 6;
- encp[1] = itoa64[i & 0x3f];
- i >>= 6;
- encp[0] = itoa64[i];
- encp += 4;
- i = ((int32_t) ((rsltblock.b[6]) << 8) | rsltblock.b[7]) << 2;
- encp[2] = itoa64[i & 0x3f];
- i >>= 6;
- encp[1] = itoa64[i & 0x3f];
- i >>= 6;
- encp[0] = itoa64[i];
-
- encp[3] = 0;
-
- return (cryptresult);
-}
-
-
-/*
- * The Key Schedule, filled in by des_setkey() or setkey().
- */
-#define KS_SIZE 16
-static C_block KS[KS_SIZE];
-
-static volatile int des_ready = 0;
-
-/*
- * Set up the key schedule from the key.
- */
-static int
-des_setkey(key)
-const char *key;
-{
- DCL_BLOCK(K, K0, K1);
- C_block *ptabp;
- int i;
-
- if (!des_ready)
- init_des();
-
- PERM6464(K, K0, K1, (unsigned char *) key, (C_block *) PC1ROT);
- key = (char *) &KS[0];
- STORE(K & ~0x03030303L, K0 & ~0x03030303L, K1, *(C_block *) key);
- for (i = 1; i < 16; i++)
- {
- key += sizeof(C_block);
- STORE(K, K0, K1, *(C_block *) key);
- ptabp = (C_block *) PC2ROT[Rotates[i] - 1];
- PERM6464(K, K0, K1, (unsigned char *) key, ptabp);
- STORE(K & ~0x03030303L, K0 & ~0x03030303L, K1, *(C_block *) key);
- }
- return (0);
-}
-
-/*
- * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
- * iterations of DES, using the given 24-bit salt and the pre-computed key
- * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
- *
- * NOTE: the performance of this routine is critically dependent on your
- * compiler and machine architecture.
- */
-static int
-des_cipher(in, out, salt, num_iter)
-const char *in;
-char *out;
-long salt;
-int num_iter;
-{
- /* variables that we want in registers, most important first */
-#if defined(pdp11)
- int j;
-#endif
- int32_t L0,
- L1,
- R0,
- R1,
- k;
- C_block *kp;
- int ks_inc,
- loop_count;
- C_block B;
-
- L0 = salt;
- TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
-
-#if defined(__vax__) || defined(pdp11)
- salt = ~salt; /* "x &~ y" is faster than "x & y". */
-#define SALT (~salt)
-#else
-#define SALT salt
-#endif
-
-#if defined(MUST_ALIGN)
- B.b[0] = in[0];
- B.b[1] = in[1];
- B.b[2] = in[2];
- B.b[3] = in[3];
- B.b[4] = in[4];
- B.b[5] = in[5];
- B.b[6] = in[6];
- B.b[7] = in[7];
- LOAD(L, L0, L1, B);
-#else
- LOAD(L, L0, L1, *(C_block *) in);
-#endif
- LOADREG(R, R0, R1, L, L0, L1);
- L0 &= 0x55555555L;
- L1 &= 0x55555555L;
- L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
- R0 &= 0xaaaaaaaaL;
- R1 = (R1 >> 1) & 0x55555555L;
- L1 = R0 | R1; /* L1 is the odd-numbered input bits */
- STORE(L, L0, L1, B);
- PERM3264(L, L0, L1, B.b, (C_block *) IE3264); /* even bits */
- PERM3264(R, R0, R1, B.b + 4, (C_block *) IE3264); /* odd bits */
-
- if (num_iter >= 0)
- { /* encryption */
- kp = &KS[0];
- ks_inc = sizeof(*kp);
- }
- else
- { /* decryption */
- num_iter = -num_iter;
- kp = &KS[KS_SIZE - 1];
- ks_inc = -(long) sizeof(*kp);
- }
-
- while (--num_iter >= 0)
- {
- loop_count = 8;
- do
- {
-
-#define SPTAB(t, i) \
- (*(int32_t *)((unsigned char *)(t) + (i)*(sizeof(int32_t)/4)))
-#if defined(gould)
- /* use this if B.b[i] is evaluated just once ... */
-#define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
-#else
-#if defined(pdp11)
- /* use this if your "long" int indexing is slow */
-#define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
-#else
- /* use this if "k" is allocated to a register ... */
-#define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
-#endif
-#endif
-
-#define CRUNCH(p0, p1, q0, q1) \
- k = ((q0) ^ (q1)) & SALT; \
- B.b32.i0 = k ^ (q0) ^ kp->b32.i0; \
- B.b32.i1 = k ^ (q1) ^ kp->b32.i1; \
- kp = (C_block *)((char *)kp+ks_inc); \
- \
- DOXOR(p0, p1, 0); \
- DOXOR(p0, p1, 1); \
- DOXOR(p0, p1, 2); \
- DOXOR(p0, p1, 3); \
- DOXOR(p0, p1, 4); \
- DOXOR(p0, p1, 5); \
- DOXOR(p0, p1, 6); \
- DOXOR(p0, p1, 7);
-
- CRUNCH(L0, L1, R0, R1);
- CRUNCH(R0, R1, L0, L1);
- } while (--loop_count != 0);
- kp = (C_block *) ((char *) kp - (ks_inc * KS_SIZE));
-
-
- /* swap L and R */
- L0 ^= R0;
- L1 ^= R1;
- R0 ^= L0;
- R1 ^= L1;
- L0 ^= R0;
- L1 ^= R1;
- }
-
- /* store the encrypted (or decrypted) result */
- L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
- L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
- STORE(L, L0, L1, B);
- PERM6464(L, L0, L1, B.b, (C_block *) CF6464);
-#if defined(MUST_ALIGN)
- STORE(L, L0, L1, B);
- out[0] = B.b[0];
- out[1] = B.b[1];
- out[2] = B.b[2];
- out[3] = B.b[3];
- out[4] = B.b[4];
- out[5] = B.b[5];
- out[6] = B.b[6];
- out[7] = B.b[7];
-#else
- STORE(L, L0, L1, *(C_block *) out);
-#endif
- return (0);
-}
-
-
-/*
- * Initialize various tables. This need only be done once. It could even be
- * done at compile time, if the compiler were capable of that sort of thing.
- */
-STATIC
-init_des()
-{
- int i,
- j;
- int32_t k;
- int tableno;
- static unsigned char perm[64],
- tmp32[32]; /* "static" for speed */
-
-/* static volatile long init_start = 0; not used */
-
- /*
- * table that converts chars "./0-9A-Za-z"to integers 0-63.
- */
- for (i = 0; i < 64; i++)
- a64toi[itoa64[i]] = i;
-
- /*
- * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
- */
- for (i = 0; i < 64; i++)
- perm[i] = 0;
- for (i = 0; i < 64; i++)
- {
- if ((k = PC2[i]) == 0)
- continue;
- k += Rotates[0] - 1;
- if ((k % 28) < Rotates[0])
- k -= 28;
- k = PC1[k];
- if (k > 0)
- {
- k--;
- k = (k | 07) - (k & 07);
- k++;
- }
- perm[i] = k;
- }
-#ifdef DEBUG
- prtab("pc1tab", perm, 8);
-#endif
- init_perm(PC1ROT, perm, 8, 8);
-
- /*
- * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
- */
- for (j = 0; j < 2; j++)
- {
- unsigned char pc2inv[64];
-
- for (i = 0; i < 64; i++)
- perm[i] = pc2inv[i] = 0;
- for (i = 0; i < 64; i++)
- {
- if ((k = PC2[i]) == 0)
- continue;
- pc2inv[k - 1] = i + 1;
- }
- for (i = 0; i < 64; i++)
- {
- if ((k = PC2[i]) == 0)
- continue;
- k += j;
- if ((k % 28) <= j)
- k -= 28;
- perm[i] = pc2inv[k];
- }
-#ifdef DEBUG
- prtab("pc2tab", perm, 8);
-#endif
- init_perm(PC2ROT[j], perm, 8, 8);
- }
-
- /*
- * Bit reverse, then initial permutation, then expansion.
- */
- for (i = 0; i < 8; i++)
- {
- for (j = 0; j < 8; j++)
- {
- k = (j < 2) ? 0 : IP[ExpandTr[i * 6 + j - 2] - 1];
- if (k > 32)
- k -= 32;
- else if (k > 0)
- k--;
- if (k > 0)
- {
- k--;
- k = (k | 07) - (k & 07);
- k++;
- }
- perm[i * 8 + j] = k;
- }
- }
-#ifdef DEBUG
- prtab("ietab", perm, 8);
-#endif
- init_perm(IE3264, perm, 4, 8);
-
- /*
- * Compression, then final permutation, then bit reverse.
- */
- for (i = 0; i < 64; i++)
- {
- k = IP[CIFP[i] - 1];
- if (k > 0)
- {
- k--;
- k = (k | 07) - (k & 07);
- k++;
- }
- perm[k - 1] = i + 1;
- }
-#ifdef DEBUG
- prtab("cftab", perm, 8);
-#endif
- init_perm(CF6464, perm, 8, 8);
-
- /*
- * SPE table
- */
- for (i = 0; i < 48; i++)
- perm[i] = P32Tr[ExpandTr[i] - 1];
- for (tableno = 0; tableno < 8; tableno++)
- {
- for (j = 0; j < 64; j++)
- {
- k = (((j >> 0) & 01) << 5) |
- (((j >> 1) & 01) << 3) |
- (((j >> 2) & 01) << 2) |
- (((j >> 3) & 01) << 1) |
- (((j >> 4) & 01) << 0) |
- (((j >> 5) & 01) << 4);
- k = S[tableno][k];
- k = (((k >> 3) & 01) << 0) |
- (((k >> 2) & 01) << 1) |
- (((k >> 1) & 01) << 2) |
- (((k >> 0) & 01) << 3);
- for (i = 0; i < 32; i++)
- tmp32[i] = 0;
- for (i = 0; i < 4; i++)
- tmp32[4 * tableno + i] = (k >> i) & 01;
- k = 0;
- for (i = 24; --i >= 0;)
- k = (k << 1) | tmp32[perm[i] - 1];
- TO_SIX_BIT(SPE[0][tableno][j], k);
- k = 0;
- for (i = 24; --i >= 0;)
- k = (k << 1) | tmp32[perm[i + 24] - 1];
- TO_SIX_BIT(SPE[1][tableno][j], k);
- }
- }
-
- des_ready = 1;
-}
-
-/*
- * Initialize "perm" to represent transformation "p", which rearranges
- * (perhaps with expansion and/or contraction) one packed array of bits
- * (of size "chars_in" characters) into another array (of size "chars_out"
- * characters).
- *
- * "perm" must be all-zeroes on entry to this routine.
- */
-STATIC
-init_perm(perm, p, chars_in, chars_out)
-C_block perm[64 / CHUNKBITS][1 << CHUNKBITS];
-unsigned char p[64];
-int chars_in,
- chars_out;
-{
- int i,
- j,
- k,
- l;
-
- for (k = 0; k < chars_out * 8; k++)
- { /* each output bit position */
- l = p[k] - 1; /* where this bit comes from */
- if (l < 0)
- continue; /* output bit is always 0 */
- i = l >> LGCHUNKBITS; /* which chunk this bit comes from */
- l = 1 << (l & (CHUNKBITS - 1)); /* mask for this bit */
- for (j = 0; j < (1 << CHUNKBITS); j++)
- { /* each chunk value */
- if ((j & l) != 0)
- perm[i][j].b[k >> 3] |= 1 << (k & 07);
- }
- }
-}
-
-/*
- * "setkey" routine (for backwards compatibility)
- */
-#ifdef NOT_USED
-int
-setkey(key)
-const char *key;
-{
- int i,
- j,
- k;
- C_block keyblock;
-
- for (i = 0; i < 8; i++)
- {
- k = 0;
- for (j = 0; j < 8; j++)
- {
- k <<= 1;
- k |= (unsigned char) *key++;
- }
- keyblock.b[i] = k;
- }
- return (des_setkey((char *) keyblock.b));
-}
-
-/*
- * "encrypt" routine (for backwards compatibility)
- */
-static int
-encrypt(block, flag)
-char *block;
-int flag;
-{
- int i,
- j,
- k;
- C_block cblock;
-
- for (i = 0; i < 8; i++)
- {
- k = 0;
- for (j = 0; j < 8; j++)
- {
- k <<= 1;
- k |= (unsigned char) *block++;
- }
- cblock.b[i] = k;
- }
- if (des_cipher((char *) &cblock, (char *) &cblock, 0L, (flag ? -1 : 1)))
- return (1);
- for (i = 7; i >= 0; i--)
- {
- k = cblock.b[i];
- for (j = 7; j >= 0; j--)
- {
- *--block = k & 01;
- k >>= 1;
- }
- }
- return (0);
-}
-#endif
-
-#ifdef DEBUG
-STATIC
-prtab(s, t, num_rows)
-char *s;
-unsigned char *t;
-int num_rows;
-{
- int i,
- j;
-
- (void) printf("%s:\n", s);
- for (i = 0; i < num_rows; i++)
- {
- for (j = 0; j < 8; j++)
- (void) printf("%3d", t[i * 8 + j]);
- (void) printf("\n");
- }
- (void) printf("\n");
-}
-
-#endif