aboutsummaryrefslogtreecommitdiff
path: root/libbrep/common.hxx
blob: 1433c8cac3cde48429a1b018a263990e38a9190a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
// file      : libbrep/common.hxx -*- C++ -*-
// license   : MIT; see accompanying LICENSE file

#ifndef LIBBREP_COMMON_HXX
#define LIBBREP_COMMON_HXX

#include <map>
#include <ratio>
#include <chrono>
#include <type_traits> // static_assert

#include <odb/query.hxx>
#include <odb/nested-container.hxx>

#include <libbutl/target-triplet.hxx>

#include <libbpkg/package-name.hxx>

#include <libbrep/types.hxx>
#include <libbrep/utility.hxx>

// The uint16_t value range is not fully covered by SMALLINT PostgreSQL type
// to which uint16_t is mapped by default.
//
#pragma db value(uint16_t) type("INTEGER")

namespace brep
{
  // Use an image type to map bpkg::version to the database since there
  // is no way to modify individual components directly.
  //
  #pragma db value
  struct _version
  {
    uint16_t epoch;
    string canonical_upstream;
    string canonical_release;
    optional<uint16_t> revision;
    string upstream;
    optional<string> release;
  };
}

#include <libbpkg/manifest.hxx>

namespace brep
{
  using optional_version = optional<bpkg::version>;
  using _optional_version = optional<_version>;
}

// Prevent assert() macro expansion in get/set expressions. This should
// appear after all #include directives since the assert() macro is
// redefined in each <assert.h> inclusion.
//
#ifdef ODB_COMPILER
#  undef assert
#  define assert assert
void assert (int);
#endif

// We have to keep these mappings at the global scope instead of inside
// the brep namespace because they need to be also effective in the
// bpkg namespace from which we "borrow" types (and some of them use version).
//
#pragma db map type(bpkg::version) as(brep::_version) \
  to(brep::_version{(?).epoch,                        \
                    (?).canonical_upstream,           \
                    (?).canonical_release,            \
                    (?).revision,                     \
                    (?).upstream,                     \
                    (?).release})                     \
  from(bpkg::version ((?).epoch,                      \
                      std::move ((?).upstream),       \
                      std::move ((?).release),        \
                      (?).revision,                   \
                      0))

#pragma db map type(brep::optional_version) as(brep::_optional_version) \
  to((?)                                                                \
     ? brep::_version{(?)->epoch,                                       \
                      (?)->canonical_upstream,                          \
                      (?)->canonical_release,                           \
                      (?)->revision,                                    \
                      (?)->upstream,                                    \
                      (?)->release}                                     \
     : brep::_optional_version ())                                      \
  from((?)                                                              \
       ? bpkg::version ((?)->epoch,                                     \
                        std::move ((?)->upstream),                      \
                        std::move ((?)->release),                       \
                        (?)->revision,                                  \
                        0)                                              \
       : brep::optional_version ())

namespace brep
{
  // path
  //
  #pragma db map type(path) as(string) to((?).string ()) from(brep::path (?))

  using optional_path = optional<path>;
  using optional_string = optional<string>;

  #pragma db map type(optional_path) as(brep::optional_string) \
    to((?) ? (?)->string () : brep::optional_string ())        \
    from((?) ? brep::path (*(?)) : brep::optional_path ())

  #pragma db map type(dir_path) as(string)     \
    to((?).string ()) from(brep::dir_path (?))

  // Make sure that timestamp can be represented in nonoseconds without loss
  // of accuracy, so the following ODB mapping is adequate.
  //
  static_assert(
    std::ratio_greater_equal<timestamp::period,
                             std::chrono::nanoseconds::period>::value,
    "The following timestamp ODB mapping is invalid");

  // As it pointed out in libbutl/timestamp.hxx we will overflow in year 2262,
  // but by that time some larger basic type will be available for mapping.
  //
  #pragma db map type(timestamp) as(uint64_t)                 \
    to(std::chrono::duration_cast<std::chrono::nanoseconds> ( \
         (?).time_since_epoch ()).count ())                   \
    from(brep::timestamp (                                    \
      std::chrono::duration_cast<brep::timestamp::duration> ( \
        std::chrono::nanoseconds (?))))

  using optional_timestamp = optional<timestamp>;
  using optional_uint64 = optional<uint64_t>;

  #pragma db map type(optional_timestamp) as(brep::optional_uint64)  \
    to((?)                                                           \
       ? std::chrono::duration_cast<std::chrono::nanoseconds> (      \
           (?)->time_since_epoch ()).count ()                        \
       : brep::optional_uint64 ())                                   \
    from((?)                                                         \
         ? brep::timestamp (                                         \
             std::chrono::duration_cast<brep::timestamp::duration> ( \
               std::chrono::nanoseconds (*(?))))                     \
         : brep::optional_timestamp ())

  // version
  //
  using bpkg::version;

  // Sometimes we need to split the version into two parts: the part
  // that goes into the object id (epoch, canonical upstream, canonical
  // release, revision) and the original upstream and release. This is what
  // the canonical_version and upstream_version value types are for. Note that
  // upstream_version derives from version and uses it as storage. The idea
  // here is this: when we split the version, we often still want to have the
  // "whole" version object readily accessible and that's exactly what this
  // strange contraption is for. See package for an example on how everything
  // fits together.
  //
  // Note that the object id cannot contain an optional member which is why we
  // make the revision type uint16_t and represent nullopt as zero. This
  // should be ok for package object ids referencing the package manifest
  // version values because an absent revision and zero revision mean the
  // same thing.
  //
  #pragma db value
  struct canonical_version
  {
    uint16_t epoch;
    string   canonical_upstream;
    string   canonical_release;
    uint16_t revision;

    canonical_version () = default;

    explicit
    canonical_version (const version& v)
        : epoch (v.epoch),
          canonical_upstream (v.canonical_upstream),
          canonical_release (v.canonical_release),
          revision (v.effective_revision ()) {}

    bool
    empty () const noexcept
    {
      // Note that an empty canonical_upstream doesn't denote an empty
      // canonical_version. Remeber, that canonical_upstream doesn't include
      // rightmost digit-only zero components? So non-empty version("0") has
      // an empty canonical_upstream.
      //
      return epoch == 0                  &&
             canonical_upstream.empty () &&
             canonical_release.empty ()  &&
             revision == 0;
    }

    // Change collation to ensure the proper comparison of the "absent" release
    // with a specified one.
    //
    // The default collation for UTF8-encoded TEXT columns in PostgreSQL is
    // UCA-compliant. This makes the statement 'a' < '~' to be false, which
    // in turn makes the statement 2.1-alpha < 2.1 to be false as well.
    //
    // Unicode Collation Algorithm (UCA): http://unicode.org/reports/tr10/
    //
    #pragma db member(canonical_release) options("COLLATE \"C\"")
  };

  #pragma db value transient
  struct upstream_version: version
  {
    #pragma db member(upstream_) virtual(string)                 \
      get(this.upstream)                                         \
      set(this = brep::version (                                 \
            0, std::move (?), std::string (), brep::nullopt, 0))

    #pragma db member(release_) virtual(optional_string)                    \
      get(this.release)                                                     \
      set(this = brep::version (                                            \
            0, std::move (this.upstream), std::move (?), brep::nullopt, 0))

    upstream_version () = default;
    upstream_version (version v): version (move (v)) {}
    upstream_version&
    operator= (version v) {version& b (*this); b = v; return *this;}

    void
    init (const canonical_version& cv, const upstream_version& uv)
    {
      // Note: revert the zero revision mapping (see above).
      //
      *this = version (cv.epoch,
                       uv.upstream,
                       uv.release,
                       (cv.revision != 0
                        ? optional<uint16_t> (cv.revision)
                        : nullopt),
                       0);

      assert (cv.canonical_upstream == canonical_upstream &&
              cv.canonical_release == canonical_release);
    }
  };

  // Wildcard version. Satisfies any dependency constraint and is represented
  // as 0+0 (which is also the "stub version"; since a real version is always
  // greater than the stub version, we reuse it to signify a special case).
  //
  extern const version wildcard_version;

  // target_triplet
  //
  using butl::target_triplet;

  #pragma db value(target_triplet) type("TEXT")

  // package_name
  //
  using bpkg::package_name;

  #pragma db value(package_name) type("CITEXT")

  #pragma db map type("CITEXT") as("TEXT") to("(?)::CITEXT") from("(?)::TEXT")

  // package_id
  //
  #pragma db value
  struct package_id
  {
    string tenant;
    package_name name;
    canonical_version version;

    package_id () = default;
    package_id (string t, package_name n, const brep::version& v)
        : tenant (move (t)),
          name (move (n)),
          version (v) {}
  };

  // repository_type
  //
  using bpkg::repository_type;
  using bpkg::to_repository_type;

  #pragma db map type(repository_type) as(string) \
    to(to_string (?))                             \
    from(brep::to_repository_type (?))

  // repository_url
  //
  using bpkg::repository_url;

  #pragma db map type(repository_url) as(string)                            \
    to((?).string ())                                                       \
    from((?).empty () ? brep::repository_url () : brep::repository_url (?))

  // repository_location
  //
  using bpkg::repository_location;

  #pragma db value
  struct _repository_location
  {
    repository_url  url;
    repository_type type;
  };

  // Note that the type() call fails for an empty repository location.
  //
  #pragma db map type(repository_location) as(_repository_location) \
    to(brep::_repository_location {(?).url (),                      \
                                   (?).empty ()                     \
                                   ? brep::repository_type::pkg     \
                                   : (?).type ()})                  \
    from(brep::repository_location (std::move ((?).url), (?).type))

  // repository_id
  //
  #pragma db value
  struct repository_id
  {
    string tenant;
    string canonical_name;

    repository_id () = default;
    repository_id (string t, string n)
        : tenant (move (t)), canonical_name (move (n)) {}
  };

  // public_key_id
  //
  #pragma db value
  struct public_key_id
  {
    string tenant;
    string fingerprint;

    public_key_id () = default;
    public_key_id (string t, string f)
        : tenant (move (t)), fingerprint (move (f)) {}
  };

  // build_class_expr
  //
  using bpkg::build_class_expr;
  using build_class_exprs = small_vector<build_class_expr, 1>;

  #pragma db value(build_class_expr) definition

  #pragma db member(build_class_expr::expr) transient
  #pragma db member(build_class_expr::underlying_classes) transient

  #pragma db member(build_class_expr::expression) virtual(string) before \
    get(this.string ())                                                  \
    set(this = brep::build_class_expr ((?), "" /* comment */))

  // build_constraints
  //
  using bpkg::build_constraint;
  using build_constraints = vector<build_constraint>;

  #pragma db value(build_constraint) definition

  // build_auxiliaries
  //
  using bpkg::build_auxiliary;
  using build_auxiliaries = vector<build_auxiliary>;

  #pragma db value(build_auxiliary) definition

  // build_toolchain
  //
  #pragma db value
  struct build_toolchain
  {
    string name;
    brep::version version;
  };

  // email
  //
  using bpkg::email;

  #pragma db value(email) definition
  #pragma db member(email::value) virtual(string) before access(this) column("")

  // build_package_config_template
  //
  using bpkg::build_package_config_template;

  // 1 for the default configuration which is always present.
  //
  template <typename K>
  using build_package_configs_template =
    small_vector<build_package_config_template<K>, 1>;

  // Return the address of the configuration object with the specified name,
  // if present, and NULL otherwise.
  //
  template <typename K>
  inline build_package_config_template<K>*
  find (const string& name, build_package_configs_template<K>& cs)
  {
    auto i (find_if (cs.begin (), cs.end (),
                     [&name] (const build_package_config_template<K>& c)
                     {return c.name == name;}));

    return i != cs.end () ? &*i : nullptr;
  }

  // Note that ODB doesn't support containers of value types which contain
  // containers. Thus, we will persist/load
  // build_package_config_template<K>::{builds,constraint,auxiliaries,bot_keys}
  // via the separate nested containers using the adapter classes.
  //

  // build_package_config_template<K>::builds
  //
  using build_class_expr_key = odb::nested_key<build_class_exprs>;
  using build_class_exprs_map = std::map<build_class_expr_key, build_class_expr>;

  #pragma db value(build_class_expr_key)
  #pragma db member(build_class_expr_key::outer) column("config_index")
  #pragma db member(build_class_expr_key::inner) column("index")

  // Adapter for build_package_config_template<K>::builds.
  //
  // Note: 1 as for build_package_configs_template.
  //
  class build_package_config_builds: public small_vector<build_class_exprs, 1>
  {
  public:
    build_package_config_builds () = default;

    template <typename K>
    explicit
    build_package_config_builds (const build_package_configs_template<K>& cs)
    {
      reserve (cs.size ());
      for (const build_package_config_template<K>& c: cs)
        push_back (c.builds);
    }

    template <typename K>
    void
    to_configs (build_package_configs_template<K>& cs) &&
    {
      // Note that the empty trailing entries will be missing (see ODB's
      // nested-container.hxx for details).
      //
      assert (size () <= cs.size ());

      auto i (cs.begin ());
      for (build_class_exprs& ces: *this)
        i++->builds = move (ces);
    }
  };

  // build_package_config_template<K>::constraints
  //
  using build_constraint_key = odb::nested_key<build_constraints>;
  using build_constraints_map = std::map<build_constraint_key, build_constraint>;

  #pragma db value(build_constraint_key)
  #pragma db member(build_constraint_key::outer) column("config_index")
  #pragma db member(build_constraint_key::inner) column("index")

  // Adapter for build_package_config_template<K>::constraints.
  //
  // Note: 1 as for build_package_configs_template.
  //
  class build_package_config_constraints:
    public small_vector<build_constraints, 1>
  {
  public:
    build_package_config_constraints () = default;

    template <typename K>
    explicit
    build_package_config_constraints (
      const build_package_configs_template<K>& cs)
    {
      reserve (cs.size ());
      for (const build_package_config_template<K>& c: cs)
        push_back (c.constraints);
    }

    template <typename K>
    void
    to_configs (build_package_configs_template<K>& cs) &&
    {
      // Note that the empty trailing entries will be missing (see ODB's
      // nested-container.hxx for details).
      //
      assert (size () <= cs.size ());

      auto i (cs.begin ());
      for (build_constraints& bcs: *this)
        i++->constraints = move (bcs);
    }
  };

  // build_package_config_template<K>::auxiliaries
  //
  using build_auxiliary_key = odb::nested_key<build_auxiliaries>;
  using build_auxiliaries_map = std::map<build_auxiliary_key, build_auxiliary>;

  #pragma db value(build_auxiliary_key)
  #pragma db member(build_auxiliary_key::outer) column("config_index")
  #pragma db member(build_auxiliary_key::inner) column("index")

  // Adapter for build_package_config_template<K>::auxiliaries.
  //
  // Note: 1 as for build_package_configs_template.
  //
  class build_package_config_auxiliaries:
    public small_vector<build_auxiliaries, 1>
  {
  public:
    build_package_config_auxiliaries () = default;

    template <typename K>
    explicit
    build_package_config_auxiliaries (
      const build_package_configs_template<K>& cs)
    {
      reserve (cs.size ());
      for (const build_package_config_template<K>& c: cs)
        push_back (c.auxiliaries);
    }

    template <typename K>
    void
    to_configs (build_package_configs_template<K>& cs) &&
    {
      // Note that the empty trailing entries will be missing (see ODB's
      // nested-container.hxx for details).
      //
      assert (size () <= cs.size ());

      auto i (cs.begin ());
      for (build_auxiliaries& bas: *this)
        i++->auxiliaries = move (bas);
    }
  };

  // build_package_config_template<K>::bot_keys
  //
  // Adapter for build_package_config_template<K>::bot_keys.
  //
  // Note: 1 as for build_package_configs_template.
  //
  template <typename K>
  class build_package_config_bot_keys: public small_vector<vector<K>, 1>
  {
  public:
    build_package_config_bot_keys () = default;

    explicit
    build_package_config_bot_keys (const build_package_configs_template<K>& cs)
    {
      this->reserve (cs.size ());
      for (const build_package_config_template<K>& c: cs)
        this->push_back (c.bot_keys);
    }

    void
    to_configs (build_package_configs_template<K>& cs) &&
    {
      // Note that the empty trailing entries will be missing (see ODB's
      // nested-container.hxx for details).
      //
      assert (this->size () <= cs.size ());

      auto i (cs.begin ());
      for (vector<K>& bks: *this)
        i++->bot_keys = move (bks);
    }
  };

  // The primary reason why a package is unbuildable by the build bot
  // controller service.
  //
  enum class unbuildable_reason: std::uint8_t
  {
    stub,          // A stub,                                     otherwise
    test,          // A separate test (built as part of primary), otherwise
    external,      // From an external repository,                otherwise
    unbuildable    // From an internal unbuildable repository.
  };

  string
  to_string (unbuildable_reason);

  unbuildable_reason
  to_unbuildable_reason (const string&); // May throw invalid_argument.

  inline ostream&
  operator<< (ostream& os, unbuildable_reason r) {return os << to_string (r);}

  using optional_unbuildable_reason = optional<unbuildable_reason>;

  #pragma db map type(unbuildable_reason) as(string) \
    to(to_string (?))                                \
    from(brep::to_unbuildable_reason (?))

  #pragma db map type(optional_unbuildable_reason) as(brep::optional_string) \
    to((?) ? to_string (*(?)) : brep::optional_string ())                    \
    from((?)                                                                 \
    ? brep::to_unbuildable_reason (*(?))                                     \
    : brep::optional_unbuildable_reason ())                                  \

  // version_constraint
  //
  using bpkg::version_constraint;

  #pragma db value(version_constraint) definition

  // test_dependency_type
  //
  using bpkg::test_dependency_type;
  using bpkg::to_test_dependency_type;

  #pragma db map type(test_dependency_type) as(string) \
    to(to_string (?))                                  \
    from(brep::to_test_dependency_type (?))

  // requirements
  //
  // Note that this is a 2-level nested container (see package.hxx for
  // details).
  //
  using bpkg::requirement_alternative;
  using bpkg::requirement_alternatives;
  using requirements = vector<requirement_alternatives>;

  #pragma db value(requirement_alternative) definition
  #pragma db value(requirement_alternatives) definition

  using requirement_alternative_key =
    odb::nested_key<requirement_alternatives>;

  using requirement_alternatives_map =
    std::map<requirement_alternative_key, requirement_alternative>;

  #pragma db value(requirement_alternative_key)
  #pragma db member(requirement_alternative_key::outer) column("requirement_index")
  #pragma db member(requirement_alternative_key::inner) column("index")

  using requirement_key = odb::nested2_key<requirement_alternatives>;

  using requirement_alternative_requirements_map =
    std::map<requirement_key, string>;

  #pragma db value(requirement_key)
  #pragma db member(requirement_key::outer)  column("requirement_index")
  #pragma db member(requirement_key::middle) column("alternative_index")
  #pragma db member(requirement_key::inner)  column("index")

  // Third-party service state which may optionally be associated with a
  // tenant (see also mod/tenant-service.hxx for background).
  //
  #pragma db value
  struct tenant_service
  {
    string id;
    string type;
    optional<string> data;

    tenant_service () = default;

    tenant_service (string i, string t, optional<string> d = nullopt)
        : id (move (i)), type (move (t)), data (move (d)) {}
  };

  // Version comparison operators.
  //
  // Compare objects that have epoch, canonical_upstream, canonical_release,
  // and revision data members. The idea is that this works for both query
  // members of types version and canonical_version.  Note, though, that the
  // object revisions should be comparable (both optional, numeric, etc), so
  // to compare version to query member or canonical_version you may need to
  // explicitly convert the version object to canonical_version.
  //
  template <typename T1, typename T2>
  inline auto
  compare_version_eq (const T1& x, const T2& y, bool revision)
    -> decltype (x.revision == y.revision)
  {
    // Since we don't quite know what T1 and T2 are (and where the resulting
    // expression will run), let's not push our luck with something like
    // (!revision || x.revision == y.revision).
    //
    auto r (x.epoch == y.epoch &&
            x.canonical_upstream == y.canonical_upstream &&
            x.canonical_release == y.canonical_release);

    return revision
      ? r && x.revision == y.revision
      : r;
  }

  template <typename T1, typename T2>
  inline auto
  compare_version_ne (const T1& x, const T2& y, bool revision)
    -> decltype (x.revision == y.revision)
  {
    auto r (x.epoch != y.epoch ||
            x.canonical_upstream != y.canonical_upstream ||
            x.canonical_release != y.canonical_release);

    return revision
      ? r || x.revision != y.revision
      : r;
  }

  template <typename T1, typename T2>
  inline auto
  compare_version_lt (const T1& x, const T2& y, bool revision)
    -> decltype (x.revision == y.revision)
  {
    auto r (
      x.epoch < y.epoch ||
      (x.epoch == y.epoch && x.canonical_upstream < y.canonical_upstream) ||
      (x.epoch == y.epoch && x.canonical_upstream == y.canonical_upstream &&
       x.canonical_release < y.canonical_release));

    return revision
      ? r ||
      (x.epoch == y.epoch && x.canonical_upstream == y.canonical_upstream &&
       x.canonical_release == y.canonical_release && x.revision < y.revision)
      : r;
  }

  template <typename T1, typename T2>
  inline auto
  compare_version_le (const T1& x, const T2& y, bool revision)
    -> decltype (x.revision == y.revision)
  {
    auto r (
      x.epoch < y.epoch ||
      (x.epoch == y.epoch && x.canonical_upstream < y.canonical_upstream));

    return revision
      ? r ||
      (x.epoch == y.epoch && x.canonical_upstream == y.canonical_upstream &&
       x.canonical_release < y.canonical_release) ||
      (x.epoch == y.epoch && x.canonical_upstream == y.canonical_upstream &&
       x.canonical_release == y.canonical_release && x.revision <= y.revision)
      : r ||
      (x.epoch == y.epoch && x.canonical_upstream == y.canonical_upstream &&
       x.canonical_release <= y.canonical_release);
  }

  template <typename T1, typename T2>
  inline auto
  compare_version_gt (const T1& x, const T2& y, bool revision)
    -> decltype (x.revision == y.revision)
  {
    auto r (
      x.epoch > y.epoch ||
      (x.epoch == y.epoch && x.canonical_upstream > y.canonical_upstream) ||
      (x.epoch == y.epoch && x.canonical_upstream == y.canonical_upstream &&
       x.canonical_release > y.canonical_release));

    return revision
      ? r ||
      (x.epoch == y.epoch && x.canonical_upstream == y.canonical_upstream &&
       x.canonical_release == y.canonical_release && x.revision > y.revision)
      : r;
  }

  template <typename T1, typename T2>
  inline auto
  compare_version_ge (const T1& x, const T2& y, bool revision)
    -> decltype (x.revision == y.revision)
  {
    auto r (
      x.epoch > y.epoch ||
      (x.epoch == y.epoch && x.canonical_upstream > y.canonical_upstream));

    return revision
      ? r ||
      (x.epoch == y.epoch && x.canonical_upstream == y.canonical_upstream &&
       x.canonical_release > y.canonical_release) ||
      (x.epoch == y.epoch && x.canonical_upstream == y.canonical_upstream &&
       x.canonical_release == y.canonical_release && x.revision >= y.revision)
      : r ||
      (x.epoch == y.epoch && x.canonical_upstream == y.canonical_upstream &&
       x.canonical_release >= y.canonical_release);
  }

  template <typename T>
  inline auto
  order_by_version_desc (
    const T& x,
    bool first = true) -> //decltype ("ORDER BY" + x.epoch)
                          decltype (x.epoch == 0)
  {
    return (first ? "ORDER BY" : ", ")
      + x.epoch + "DESC,"
      + x.canonical_upstream + "DESC,"
      + x.canonical_release + "DESC,"
      + x.revision + "DESC";
  }

  template <typename T>
  inline auto
  order_by_version (
    const T& x,
    bool first = true) -> //decltype ("ORDER BY" + x.epoch)
                          decltype (x.epoch == 0)
  {
    return (first ? "ORDER BY" : ", ")
      + x.epoch + ","
      + x.canonical_upstream + ","
      + x.canonical_release + ","
      + x.revision;
  }

  // Package id comparison operators.
  //
  inline bool
  operator< (const package_id& x, const package_id& y)
  {
    if (int r = x.tenant.compare (y.tenant))
      return r < 0;

    if (int r = x.name.compare (y.name))
      return r < 0;

    return compare_version_lt (x.version, y.version, true);
  }

  // Compare objects that have tenant, name, and version data members. The
  // idea is that this works for both query members of package id types (in
  // particular in join conditions) as well as for values of package_id type.
  //
  template <typename T1, typename T2>
  inline auto
  operator== (const T1& x, const T2& y)
    -> decltype (x.tenant == y.tenant &&
                 x.name == y.name     &&
                 x.version.epoch == y.version.epoch)
  {
    return x.tenant == y.tenant &&
           x.name == y.name     &&
           compare_version_eq (x.version, y.version, true);
  }

  template <typename T1, typename T2>
  inline auto
  operator!= (const T1& x, const T2& y)
    -> decltype (x.tenant == y.tenant &&
                 x.name == y.name     &&
                 x.version.epoch == y.version.epoch)
  {
    return x.tenant != y.tenant ||
           x.name != y.name     ||
           compare_version_ne (x.version, y.version, true);
  }

  // Allow comparing the query members with the query parameters bound by
  // reference to variables of the canonical version type (in particular in
  // the prepared queries).
  //
  // Note that it is not operator==() since the query template parameter type
  // can not be deduced from the function parameter types and needs to be
  // specified explicitly.
  //
  template <typename T, typename V>
  inline auto
  equal (const V& x, const canonical_version& y)
    -> decltype (x.epoch == odb::query<T>::_ref (y.epoch))
  {
    using query = odb::query<T>;

    return x.epoch              == query::_ref (y.epoch)              &&
           x.canonical_upstream == query::_ref (y.canonical_upstream) &&
           x.canonical_release  == query::_ref (y.canonical_release)  &&
           x.revision           == query::_ref (y.revision);
  }

  // Allow comparing the query members with the query parameters bound by
  // reference to variables of the package id type (in particular in the
  // prepared queries).
  //
  // Note that it is not operator==() since the query template parameter type
  // can not be deduced from the function parameter types and needs to be
  // specified explicitly.
  //
  template <typename T, typename ID>
  inline auto
  equal (const ID& x, const package_id& y)
    -> decltype (x.tenant        == odb::query<T>::_ref (y.tenant) &&
                 x.name          == odb::query<T>::_ref (y.name)   &&
                 x.version.epoch == odb::query<T>::_ref (y.version.epoch))
  {
    using query = odb::query<T>;

    return x.tenant == query::_ref (y.tenant) &&
           x.name   == query::_ref (y.name)   &&
           equal<T> (x.version, y.version);
  }

  // Repository id comparison operators.
  //
  inline bool
  operator< (const repository_id& x, const repository_id& y)
  {
    if (int r = x.tenant.compare (y.tenant))
      return r < 0;

    return x.canonical_name.compare (y.canonical_name) < 0;
  }

  // Compare objects that have tenant and canonical_name data members. The
  // idea is that this works for both query members of repository id types (in
  // particular in join conditions) as well as for values of repository_id
  // type.
  //
  template <typename T1, typename T2>
  inline auto
  operator== (const T1& x, const T2& y)
    -> decltype (x.tenant == y.tenant && x.canonical_name == y.canonical_name)
  {
    return x.tenant == y.tenant && x.canonical_name == y.canonical_name;
  }

  template <typename T1, typename T2>
  inline auto
  operator!= (const T1& x, const T2& y)
    -> decltype (x.tenant == y.tenant && x.canonical_name == y.canonical_name)
  {
    return x.tenant != y.tenant || x.canonical_name != y.canonical_name;
  }

  // Public key id comparison operators.
  //
  inline bool
  operator< (const public_key_id& x, const public_key_id& y)
  {
    if (int r = x.tenant.compare (y.tenant))
      return r < 0;

    return x.fingerprint.compare (y.fingerprint) < 0;
  }

  // Compare objects that have tenant and fingerprint data members. The idea
  // is that this works for both query members of public key id types (in
  // particular in join conditions) as well as for values of public_key_id
  // type.
  //
  template <typename T1, typename T2>
  inline auto
  operator== (const T1& x, const T2& y)
    -> decltype (x.tenant == y.tenant && x.fingerprint == y.fingerprint)
  {
    return x.tenant == y.tenant && x.fingerprint == y.fingerprint;
  }

  template <typename T1, typename T2>
  inline auto
  operator!= (const T1& x, const T2& y)
    -> decltype (x.tenant == y.tenant && x.fingerprint == y.fingerprint)
  {
    return x.tenant != y.tenant || x.fingerprint != y.fingerprint;
  }
}

#endif // LIBBREP_COMMON_HXX