aboutsummaryrefslogtreecommitdiff
path: root/build/cxx/rule.cxx
blob: ccc9bb5f11bbe2fb0832665fdfd9ab4f6b97cc64 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// file      : build/cxx/rule.cxx -*- C++ -*-
// copyright : Copyright (c) 2014-2015 Code Synthesis Tools CC
// license   : MIT; see accompanying LICENSE file

#include <build/cxx/rule>

#include <cstddef>  // size_t
#include <cstdlib>  // exit
#include <string>
#include <vector>
#include <iostream>

#include <ext/stdio_filebuf.h>

#include <build/process>
#include <build/timestamp>
#include <build/diagnostics>

using namespace std;

namespace build
{
  namespace cxx
  {
    // compile
    //
    recipe compile::
    match (target& t) const
    {
      // @@ TODO:
      //
      // - check prerequisites: single source file
      // - check prerequisites: the rest are headers (issue warning at v=1?)
      // - if path already assigned, verify extension
      //
      // @@ Q:
      //
      // - if there is no .cxx, are we going to check if the one derived
      //   from target exist or can be built? If we do that, then it
      //   probably makes sense to try other rules first (two passes).
      //
      // - Wouldn't it make sense to cache source file? Careful: unloading
      //   of dependency info.
      //

      // See if we have a source file.
      //
      const cxx* s (nullptr);
      for (const target& p: t.prerequisites ())
      {
        if ((s = dynamic_cast<const cxx*> (&p)) != nullptr)
          break;
      }

      if (s == nullptr)
        return recipe ();

      // Derive object file name from target name.
      //
      obj& o (dynamic_cast<obj&> (t));

      if (o.path ().empty ())
        o.path (path (o.name () + ".o"));

      // Inject additional prerequisites.
      //
      inject_prerequisites (o, *s);

      return recipe (&update);
    }

    // Return the next make prerequisite starting from the specified
    // position and update position to point to the start of the
    // following prerequisite or l.size() if there are none left.
    //
    static string
    next (const string& l, size_t& p)
    {
      size_t n (l.size ());

      // Skip leading spaces.
      //
      for (; p != n && l[p] == ' '; p++) ;

      // Lines containing multiple prerequisites are 80 characters max.
      //
      string r;
      r.reserve (n);

      // Scan the next prerequisite while watching out for escape sequences.
      //
      for (; p != n && l[p] != ' '; p++)
      {
        char c (l[p]);

        if (c == '\\')
          c = l[++p];

        r += c;
      }

      // Skip trailing spaces.
      //
      for (; p != n && l[p] == ' '; p++) ;

      // Skip final '\'.
      //
      if (p == n - 1 && l[p] == '\\')
        p++;

      return r;
    }

    void compile::
    inject_prerequisites (obj& o, const cxx& s) const
    {
      const char* args[] = {
        "g++-4.9",
        "-std=c++14",
        "-I..",
        "-M",
        "-MG",      // Treat missing headers as generated.
        "-MQ", "*", // Quoted target (older version can't handle empty name).
        s.path ().string ().c_str (),
        nullptr};

      try
      {
        process pr (args, false, false, true);

        __gnu_cxx::stdio_filebuf<char> fb (pr.in_ofd, ios_base::in);
        istream is (&fb);

        for (bool first (true); !is.eof (); )
        {
          string l;
          getline (is, l);

          if (is.fail () && !is.eof ())
          {
            cerr << "error: io error while parsing g++ -M output" << endl;
            throw error ();
          }

          size_t p (0);

          if (first)
          {
            // Empty output should mean the wait() call below will return
            // false.
            //
            if (l.empty ())
              break;

            assert (l[0] == '*' && l[1] == ':' && l[2] == ' ');
            next (l, (p = 3)); // Skip the source file.

            first = false;
          }

          while (p != l.size ())
          {
            path d (next (l, p));

            // If there is no extension (e.g., std C++ headers), then
            // assume it is a header. Otherwise, let the normall
            // mechanism to figure the type from the extension.
            //

            // @@ TODO:
            //
            // - memory leak

            hxx& h (*new hxx (d.leaf ().base ().string ()));
            h.path (d);

            o.prerequisite (h);
          }
        }

        // We assume the child process issued some diagnostics.
        //
        if (!pr.wait ())
          throw error ();
      }
      catch (const process_error& e)
      {
        cerr << "error: unable to execute '" << args[0] << "': " <<
          e.what () << endl;

        // In a multi-threaded program that fork()'ed but did not exec(),
        // it is unwise to try to do any kind of cleanup (like unwinding
        // the stack and running destructors).
        //
        if (e.child ())
          exit (1);

        throw error ();
      }
    }

    target_state compile::
    update (target& t)
    {
      obj& o (dynamic_cast<obj&> (t));
      timestamp mt (o.mtime ());

      bool u (mt == timestamp_nonexistent);
      const cxx* s (nullptr);

      for (const target& p: t.prerequisites ())
      {
        // Assume all our prerequisites are mtime-based (checked in
        // match()).
        //
        if (!u)
        {
          const auto& mtp (dynamic_cast<const mtime_target&> (p));
          timestamp mp (mtp.mtime ());

          // What do we do if timestamps are equal? This can happen, for
          // example, on filesystems that don't have subsecond resolution.
          // There is not much we can do here except detect the case where
          // the prerequisite was updated in this run which means the
          // target must be out of date.
          //
          if (mt < mp || mt == mp && mtp.state () == target_state::updated)
            u = true;
        }

        if (s == nullptr)
          s = dynamic_cast<const cxx*> (&p);

        if (u && s != nullptr)
          break;
      }

      if (!u)
        return target_state::uptodate;

      const char* args[] = {
        "g++-4.9",
        "-std=c++14",
        "-I..",
        "-c",
        "-o", o.path ().string ().c_str (),
        s->path ().string ().c_str (),
        nullptr};

      cerr << "c++ " << *s << endl;

      try
      {
        process pr (args);

        if (!pr.wait ())
          return target_state::failed;

        // Should we go to the filesystem and get the new mtime? We
        // know the file has been modified, so instead just use the
        // current clock time. It has the advantage of having the
        // subseconds precision.
        //
        o.mtime (system_clock::now ());
        return target_state::updated;
      }
      catch (const process_error& e)
      {
        cerr << "error: unable to execute '" << args[0] << "': " <<
          e.what () << endl;

        // In a multi-threaded program that fork()'ed but did not exec(),
        // it is unwise to try to do any kind of cleanup (like unwinding
        // the stack and running destructors).
        //
        if (e.child ())
          exit (1);

        return target_state::failed;
      }
    }

    // link
    //
    recipe link::
    match (target& t) const
    {
      // @@ TODO:
      //
      // - check prerequisites: object files, libraries
      // - if path already assigned, verify extension
      //
      // @@ Q:
      //
      // - if there is no .o, are we going to check if the one derived
      //   from target exist or can be built? If we do that, then it
      //   probably makes sense to try other rules first (two passes).
      //   What if there is a library. Probably ok if .a, not is .so.
      //

      // See if we have at least one object file.
      //
      const obj* o (nullptr);
      for (const target& p: t.prerequisites ())
      {
        if ((o = dynamic_cast<const obj*> (&p)) != nullptr)
          break;
      }

      if (o == nullptr)
        return recipe ();

      // Derive executable file name from target name.
      //
      exe& e (dynamic_cast<exe&> (t));

      if (e.path ().empty ())
        e.path (path (e.name ()));

      return recipe (&update);
    }

    target_state link::
    update (target& t)
    {
      // @@ Q:
      //
      // - what are we doing with libraries?
      //

      exe& e (dynamic_cast<exe&> (t));
      timestamp mt (e.mtime ());

      bool u (mt == timestamp_nonexistent);

      for (const target& p: t.prerequisites ())
      {
        // Assume all our prerequisites are mtime-based (checked in
        // match()).
        //
        const auto& mtp (dynamic_cast<const mtime_target&> (p));
        timestamp mp (mtp.mtime ());

        // What do we do if timestamps are equal? This can happen, for
        // example, on filesystems that don't have subsecond resolution.
        // There is not much we can do here except detect the case where
        // the prerequisite was updated in this run which means the
        // target must be out of date.
        //
        if (mt < mp || mt == mp && mtp.state () == target_state::updated)
        {
          u = true;
          break;
        }
      }

      if (!u)
        return target_state::uptodate;

      vector<const char*> args {"g++-4.9", "-std=c++14", "-o"};

      args.push_back (e.path ().string ().c_str ());

      for (const target& p: t.prerequisites ())
      {
        const obj& o (dynamic_cast<const obj&> (p));
        args.push_back (o.path ().string ().c_str ());
      }

      args.push_back (nullptr);

      cerr << "ld " << e << endl;

      try
      {
        process pr (args.data ());

        if (!pr.wait ())
          return target_state::failed;

        // Should we go to the filesystem and get the new mtime? We
        // know the file has been modified, so instead just use the
        // current clock time. It has the advantage of having the
        // subseconds precision.
        //
        e.mtime (system_clock::now ());
        return target_state::updated;
      }
      catch (const process_error& e)
      {
        cerr << "error: unable to execute '" << args[0] << "': " <<
          e.what () << endl;

        // In a multi-threaded program that fork()'ed but did not exec(),
        // it is unwise to try to do any kind of cleanup (like unwinding
        // the stack and running destructors).
        //
        if (e.child ())
          exit (1);

        return target_state::failed;
      }
    }
  }
}