1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
|
// file : libbuild2/bash/rule.cxx -*- C++ -*-
// license : MIT; see accompanying LICENSE file
#include <libbuild2/bash/rule.hxx>
#include <cstring> // strlen(), strchr()
#include <libbuild2/scope.hxx>
#include <libbuild2/target.hxx>
#include <libbuild2/algorithm.hxx>
#include <libbuild2/diagnostics.hxx>
#include <libbuild2/in/target.hxx>
#include <libbuild2/bash/target.hxx>
#include <libbuild2/bash/utility.hxx>
using namespace std;
using namespace butl;
namespace build2
{
namespace bash
{
using in::in;
struct match_data
{
explicit
match_data (const in_rule& r): rule (r) {}
// The "for install" condition is signalled to us by install_rule when
// it is matched for the update operation. It also verifies that if we
// have already been executed, then it was for install.
//
// See cc::link_rule for a discussion of some subtleties in this logic.
//
optional<bool> for_install;
const in_rule& rule;
target_state
operator() (action a, const target& t)
{
// Unless the outer install rule signalled that this is update for
// install, signal back that we've performed plain update.
//
if (!for_install)
for_install = false;
//@@ TODO: need to verify all the modules we depend on are compatible
// with our for_install value, similar to cc::link_rule's
// append_libraries() (and which is the other half of the check
// in install_rule).
return rule.perform_update (a, t);
}
};
static_assert (sizeof (match_data) <= target::small_data_size,
"match data requires dynamic allocation");
// in_rule
//
bool in_rule::
match (action a, target& xt, const string& hint, match_extra&) const
{
tracer trace ("bash::in_rule::match");
file& t (xt.as<file> ()); // Only registered for exe{} and bash{}.
// Note that for bash{} and for exe{} with hint we match even if the
// target does not depend on any modules (while it could have been
// handled by the in module, that would require loading it).
//
bool fi (false); // Found in.
bool fm (!hint.empty () || t.is_a<bash> ()); // Found module.
for (prerequisite_member p: group_prerequisite_members (a, t))
{
if (include (a, t, p) != include_type::normal) // Excluded/ad hoc.
continue;
fi = fi || p.is_a<in> ();
fm = fm || p.is_a<bash> ();
}
if (!fi)
l4 ([&]{trace << "no in file prerequisite for target " << t;});
if (!fm)
l4 ([&]{trace << "no bash module prerequisite or hint for target "
<< t;});
// If we match, derive the file name early as recommended by the in
// rule.
//
if (fi && fm)
t.derive_path ();
return fi && fm;
}
recipe in_rule::
apply (action a, target& t) const
{
recipe r (rule::apply (a, t));
if (a == perform_update_id)
{
// Note that for-install is signalled by install_rule and therefore
// can only be relied upon during execute.
//
return match_data (*this);
}
return r;
}
prerequisite_target in_rule::
search (action a,
const target& t,
const prerequisite_member& pm,
include_type i) const
{
tracer trace ("bash::in_rule::search");
// Handle import of installed bash{} modules.
//
if (i == include_type::normal && pm.proj () && pm.is_a<bash> ())
{
// We only need this during update.
//
if (a != perform_update_id)
return nullptr;
const prerequisite& p (pm.prerequisite);
// Form the import path.
//
// Note that unless specified, we use the standard .bash extension
// instead of going through the bash{} target type since this path is
// not in our project (and thus no project-specific customization
// apply).
//
string ext (p.ext ? *p.ext : "bash");
path ip (dir_path (modules_install_dir (*p.proj)) / p.dir / p.name);
if (!ext.empty ())
{
ip += '.';
ip += ext;
}
// Search in PATH, similar to butl::path_search().
//
if (optional<string> s = getenv ("PATH"))
{
for (const char* b (s->c_str ()), *e;
b != nullptr;
b = (e != nullptr ? e + 1 : e))
{
e = strchr (b, path::traits_type::path_separator);
// Empty path (i.e., a double colon or a colon at the beginning or
// end of PATH) means search in the current dirrectory. We aren't
// going to do that. Also silently skip invalid paths, stat()
// errors, etc.
//
if (size_t n = (e != nullptr ? e - b : strlen (b)))
{
try
{
path ap (b, n);
ap /= ip;
ap.normalize ();
timestamp mt (file_mtime (ap));
if (mt != timestamp_nonexistent)
{
// @@ Do we actually need _locked(), isn't path_mtime()
// atomic?
//
auto rp (t.ctx.targets.insert_locked (bash::static_type,
ap.directory (),
dir_path () /* out */,
p.name,
ext,
target_decl::implied,
trace));
bash& pt (rp.first.as<bash> ());
// Only set path/mtime on first insertion.
//
if (rp.second)
pt.path_mtime (move (ap), mt);
// Save the length of the import path in auxuliary data. We
// use it in substitute_import() to infer the installation
// directory.
//
return prerequisite_target (&pt, i, ip.size ());
}
}
catch (const invalid_path&) {}
catch (const system_error&) {}
}
}
}
// Let standard search() handle it.
}
return rule::search (a, t, pm, i);
}
optional<string> in_rule::
substitute (const location& l,
action a,
const target& t,
const string& n,
optional<uint64_t> flags,
bool strict,
const substitution_map* smap,
const optional<string>& null) const
{
assert (!flags);
return n.compare (0, 6, "import") == 0 && (n[6] == ' ' || n[6] == '\t')
? substitute_import (l, a, t, trim (string (n, 7)))
: rule::substitute (l, a, t, n, nullopt, strict, smap, null);
}
string in_rule::
substitute_import (const location& l,
action a,
const target& t,
const string& n) const
{
// Derive (relative) import path from the import name. And derive import
// installed path from that by adding the .bash extension to the first
// component.
//
path ip, iip;
project_name pn;
try
{
ip = path (n);
if (ip.empty () || ip.simple () || ip.absolute ())
throw invalid_path (n);
if (ip.extension_cstring () == nullptr)
ip += ".bash";
ip.normalize ();
auto b (ip.begin ()), e (ip.end ());
try
{
pn = project_name (*b);
}
catch (const invalid_argument& e)
{
fail (l) << "invalid import path '" << n << "': " << e.what ();
}
char s (b++.separator ());
iip = path (modules_install_dir (pn) + s) / path (b, e);
// Strip the .bash extension from the project name in this path to
// be able to compare it to paths inside the project (see below).
//
if (pn.extension () == "bash")
ip = path (pn.base ("bash") + s) / path (b, e);
}
catch (const invalid_path&)
{
fail (l) << "invalid import path '" << n << "'";
}
// Look for a matching prerequisite.
//
const path* ap (nullptr);
for (const prerequisite_target& pt: t.prerequisite_targets[a])
{
if (pt.target == nullptr || pt.adhoc ())
continue;
if (const bash* b = pt.target->is_a<bash> ())
{
const path& pp (b->path ());
assert (!pp.empty ()); // Should have been assigned by update.
// The simple "tail match" can be ambigous. Consider, for example,
// the foo/bar.bash import path and /.../foo/bar.bash as well as
// /.../x/foo/bar.bash prerequisites: they would both match.
//
// So the rule is the match must be from the project root directory
// or from the installation directory for the import-installed
// prerequisites.
//
// But we still do a simple match first since it can quickly weed
// out candidates that cannot possibly match.
// See if this is import-installed target (refer to search() above
// for details).
//
if (size_t n = pt.data)
{
if (!pp.sup (iip))
continue;
// Both are normalized so we can compare the "tails".
//
const string& ps (pp.string ());
const string& is (iip.string ());
if (path::traits_type::compare (
ps.c_str () + ps.size () - n, n,
is.c_str (), is.size ()) == 0)
{
ap = &pp;
break;
}
else
continue;
}
if (const scope* rs = b->base_scope ().root_scope ())
{
if (!pp.sup (ip) || project (*rs) != pn)
continue;
const dir_path& d (pp.sub (rs->src_path ())
? rs->src_path ()
: rs->out_path ());
if (pp.leaf (d) == ip)
{
ap = &pp;
break;
}
else
continue;
}
fail (l) << "target " << *b << " is out of project nor imported";
}
}
if (ap == nullptr)
fail (l) << "unable to resolve import path " << ip;
match_data& md (t.data<match_data> (a));
assert (md.for_install);
if (*md.for_install)
{
// For the installed case we assume the script and all its modules are
// installed into the same location (i.e., the same bin/ directory)
// and so we use the path relative to the script.
//
// BTW, the semantics of the source builtin in bash is to search in
// PATH if it's a simple path (that is, does not contain directory
// components) and then in the current working directory.
//
// So we have to determine the scripts's directory ourselves for which
// we use the BASH_SOURCE array. Without going into the gory details,
// the last element in this array is the script's path regardless of
// whether we are in the script or (sourced) module (but it turned out
// not to be what we need; see below).
//
// We also want to get the script's "real" directory even if it was
// itself symlinked somewhere else. And this is where things get
// hairy: we could use either realpath or readlink -f but neither is
// available on Mac OS (there is readlink but it doesn't support the
// -f option).
//
// One can get GNU readlink from Homebrew but it will be called
// greadlink. Note also that for any serious development one will
// probably be also getting newer bash from Homebrew since the system
// one is stuck in the GPLv2 version 3.2.X era. So a bit of a mess.
//
// For now let's use readlink -f and see how it goes. If someone wants
// to use/support their scripts on Mac OS, they have several options:
//
// 1. Install greadlink (coreutils) and symlink it as readlink.
//
// 2. Add the readlink function to their script that does nothing;
// symlinking scripts won't be supported but the rest should work
// fine.
//
// 3. Add the readlink function to their script that calls greadlink.
//
// 4. Add the readlink function to their script that implements the
// -f mode (or at least the part of it that we need). See the bash
// module tests for some examples.
//
// In the future we could automatically inject an implementation along
// the (4) lines at the beginning of the script.
//
// Note also that we really, really want to keep the substitution a
// one-liner since the import can be in an (indented) if-block, etc.,
// and we still want the resulting scripts to be human-readable.
//
if (t.is_a<exe> ())
{
return
"source \"$(dirname"
" \"$(readlink -f"
" \"${BASH_SOURCE[0]}\")\")/"
+ iip.string () + '"';
}
else
{
// Things turned out to be trickier for the installed modules: we
// cannot juts use the script's path since it itself might not be
// installed (import installed). So we have to use the importer's
// path and calculate its "offset" to the installation directory.
//
dir_path d (t.dir.leaf (t.root_scope ().out_path ()));
string o;
for (auto i (d.begin ()), e (d.end ()); i != e; ++i)
o += "../";
// Here we don't use readlink since we assume nobody will symlink
// the modules (or they will all be symlinked together).
//
return
"source \"$(dirname"
" \"${BASH_SOURCE[0]}\")/"
+ o + iip.string () + '"';
}
}
else
return "source " + ap->string ();
}
// install_rule
//
bool install_rule::
match (action a, target& t) const
{
// We only want to handle installation if we are also the ones building
// this target. So first run in's match().
//
return in_.sub_match (in_name_, update_id, a, t) &&
file_rule::match (a, t);
}
recipe install_rule::
apply (action a, target& t, match_extra& me) const
{
recipe r (file_rule::apply_impl (a, t, me));
if (r == nullptr)
return noop_recipe;
if (a.operation () == update_id)
{
// Signal to the in rule that this is update for install. And if the
// update has already been executed, verify it was done for install.
//
auto& md (t.data<match_data> (a.inner_action ()));
if (md.for_install)
{
if (!*md.for_install)
fail << "incompatible " << t << " build" <<
info << "target already updated but not for install";
}
else
md.for_install = true;
}
return r;
}
}
}
|