aboutsummaryrefslogtreecommitdiff
path: root/libbuild2/bin/rule.cxx
blob: 27c9b4b36d53737ad390d3246519d0b317dad75e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
// file      : libbuild2/bin/rule.cxx -*- C++ -*-
// license   : MIT; see accompanying LICENSE file

#include <libbuild2/bin/rule.hxx>

#include <libbuild2/scope.hxx>
#include <libbuild2/target.hxx>
#include <libbuild2/algorithm.hxx>
#include <libbuild2/diagnostics.hxx>

#include <libbuild2/bin/target.hxx>
#include <libbuild2/bin/utility.hxx>

using namespace std;

namespace build2
{
  namespace bin
  {
    // obj_rule
    //
    bool obj_rule::
    match (action a, target& t) const
    {
      const char* n (t.dynamic_type->name); // Ignore derived type.

      fail << diag_doing (a, t) << " target group" <<
        info << "explicitly select " << n << "e{}, " << n << "a{}, or "
           << n << "s{} member" << endf;
    }

    recipe obj_rule::
    apply (action, target&) const {return empty_recipe;}

    // libul_rule
    //
    bool libul_rule::
    match (action, target&) const
    {
      return true;
    }

    recipe libul_rule::
    apply (action a, target& t) const
    {
      // Pick one of the members. First looking for the one already matched.
      //
      const target* m (nullptr);

      const libus* ls (nullptr);
      {
        ls = search_existing<libus> (t.ctx, t.dir, t.out, t.name);

        if (ls != nullptr && ls->matched (a))
          m = ls;
      }

      const libua* la (nullptr);
      if (m == nullptr)
      {
        la = search_existing<libua> (t.ctx, t.dir, t.out, t.name);

        if (la != nullptr && la->matched (a))
          m = la;
      }

      if (m == nullptr)
      {
        const scope& bs (t.base_scope ());

        lmembers lm (link_members (*bs.root_scope ()));

        if (lm.s && lm.a)
        {
          // Use the bin.exe.lib order as a heuristics to pick the library
          // (i.e., the most likely utility library to be built is the one
          // most likely to be linked).
          //
          lorder lo (link_order (bs, otype::e));

          (lo == lorder::s_a || lo == lorder::s ? lm.a : lm.s) = false;
        }

        if (lm.s)
          m = ls != nullptr ? ls : &search<libus> (t, t.dir, t.out, t.name);
        else
          m = la != nullptr ? la : &search<libua> (t, t.dir, t.out, t.name);
      }

      // Save the member we picked in case others (e.g., $x.lib_poptions())
      // need this information.
      //
      t.prerequisite_targets[a].push_back (m);

      if (match_sync (a, *m, unmatch::safe).first)
        return noop_recipe;

      return [] (action a, const target& t)
      {
        const target* m (t.prerequisite_targets[a].back ());

        // For update always return unchanged so we are consistent whether we
        // managed to unmatch or now. Note that for clean we may get postponed
        // so let's return the actual target state.
        //
        target_state r (execute_sync (a, *m));
        return a == perform_update_id ? target_state::unchanged : r;
      };
    }

    // lib_rule
    //
    // The whole logic is pretty much as if we had our two group members as
    // our prerequisites.
    //
    bool lib_rule::
    match (action a, target& xt) const
    {
      lib& t (xt.as<lib> ());

      lmembers bm (a.meta_operation () != dist_id
                   ? link_members (t.root_scope ())
                   : lmembers {true, true});

      t.a = bm.a ? &search<liba> (t, t.dir, t.out, t.name) : nullptr;
      t.s = bm.s ? &search<libs> (t, t.dir, t.out, t.name) : nullptr;

      return true;
    }

    recipe lib_rule::
    apply (action a, target& xt) const
    {
      lib& t (xt.as<lib> ());

      //@@ outer: also prerequisites (if outer) or not?

      const target* m[] = {t.a, t.s};
      match_members (a, t, m);

      return &perform;
    }

    target_state lib_rule::
    perform (action a, const target& xt)
    {
      const lib& t (xt.as<lib> ());

      const target* m[] = {t.a, t.s};
      return execute_members (a, t, m);
    }
  }
}